DOI QR코드

DOI QR Code

A framework for fast estimation of structural seismic responses using ensemble machine learning model

  • Li, Chunxiang (School of Mechanism and Engineering Science, Shanghai University) ;
  • Li, Hai (School of Mechanism and Engineering Science, Shanghai University) ;
  • Chen, Xu (International Research Institute of Disaster Science, Tohoku University)
  • 투고 : 2020.12.25
  • 심사 : 2021.05.10
  • 발행 : 2021.09.25

초록

While recognized as most rigorous procedure leading to 'exact' structural seismic responses, nonlinear time history analysis is usually time consuming and computational demanding, especially when numerous structures remain to be analyzed. This paper proposes a framework to improve the time efficiency in evaluating the structural seismic demands, using ensemble machine learning models based on 'classification-regression' philosophy. Typical tall pier bridges widely located in southwest China are employed as illustrative examples to validate the efficiency and performance of this proposed framework. The results and discussion show that with properly selected input variables, the proposed ensemble model (ORF-ANN herein) performs better in predicting seismic demands than other single learning algorithms (i.e., ANN and ORF), while the time efficiency is improved over 90%. This proposed model could drastically improve the efficiency for determining structural parameters in preliminary design process, and thus reduce the iterations of trail analysis. Additionally, the model constructed from proposed framework is believed especially favored for evaluating the post-earthquake states/resilience of a region and/or highway network, where thousands of structures might be contained, and conducting nonlinear time history analysis for each one would be prohibitively time consuming and delay the rescue operations.

키워드

과제정보

The authors gratefully acknowledge the support by the National Natural Science Foundation (No. 51908348 & 51778354). The corresponding author also acknowledges the support of Shanghai Post-doctoral Excellence Program.

참고문헌

  1. Aguirre, D.A. and Montejo, L.A. (2014), "Damping and frequency changes induced by increasing levels of inelastic seismic demand", Smart Struct. Syst., Int. J., 14(3), 445-468. http://doi.org/10.12989/sss.2014.14.3.445
  2. Airouche, A., Bechtoula, H., Aknouche, H., Thoen, B.K. and Benouar, D. (2014), "Experimental identification of the six dof cgs, algeria, shaking table system", Smart Struct. Syst., Int. J., 13(1), 137-154. http://doi.org/10.12989/sss.2014.13.1.137
  3. Alam, R., Peden, D. and Lach, J. (2020), "Wearable respiration monitoring: Interpretable inference with context and sensor biomarkers", IEEE J. Biomed. Health Inform., 25(6), 1938-1948. http://doi.org/10.1109/jbhi.2020.3035776
  4. Basheer, I.A. and Hajmeer, M. (2000), "Artificial neural networks: Fundamentals, computing, design, and application", J. Microbiol. Methods, 43(1), 3-31. http://doi.org/10.1016/S0167-7012(00)00201-3
  5. Boggs, D. (1997), "Acceleration indexes for human comfort in tall buildings-Peak or RMS", CTBUH Monogr., 1-21.
  6. Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32. http://doi.org/10.1023/a:1010933404324
  7. Chen, X. (2020), "System fragility assessment of tall-pier bridges subjected to near-fault ground motions", J. Bridge Eng., 25(3), 04019143. http://doi.org/10.1061/(asce)be.1943-5592.0001526
  8. Chen, X. and Li, C. (2020), "Seismic performance of tall pier bridges retrofitted with lead rubber bearings and rocking foundation", Eng. Struct., 212, 110529. http://doi.org/10.1016/j.engstruct.2020.110529
  9. Chen, K., Gong, S., Xiang, T. and Loy, C.C. (2013), "Cumulative attribute space for age and crowd density estimation", Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June.
  10. Chen, Z.H., Ni, Y.Q. and Or, S.W. (2015), "Characterization and modeling of a self-sensing mr damper under harmonic loading", Smart Struct. Syst., Int. J., 15(4), 1103-1120. http://doi.org/10.12989/sss.2015.15.4.1103
  11. Chen, X., Li, J. and Liu, X. (2017), "Seismic performance of tall piers influenced by higher-mode effects of piers", J. Tongji Univ. (Natural Science), 45(02), 159-166.
  12. Chen, X., Guan, Z., Li, J. and Spencer, B.F. (2018a), "Shake table tests of tall-pier bridges to evaluate seismic performance", J. Bridge Eng., 23(9), 04018058. http://doi.org/10.1061/(asce)be.1943-5592.0001264
  13. Chen, X., Guan, Z., Spencer, B.F. and Li, J. (2018b), "A simplified procedure for estimating nonlinear seismic demand of tall piers", Eng. Struct., 174, 778-791. http://doi.org/10.1016/j.engstruct.2018.07.102
  14. Chen, P.-C., Hsu, S.-C., Zhong, Y.-J. and Wang, S.-J. (2019), "Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry", Smart Struct. Syst., Int. J., 23(1), 91-106. http://doi.org10.12989/sss.2019.23.1.091
  15. Chen, X., Xiang, N., Li, J., and Guan, Z. (2020), "Influence of near-fault pulse-like motion characteristics on seismic performance of tall pier bridges with fragility analysis", J. Earthq. Eng., 1-22. http://doi.org/10.1080/13632469.2020.1751345
  16. Chopra, A.K. and Goel, R.K. (2002), "A modal pushover analysis procedure for estimating seismic demands for buildings", Earthq. Eng. Struct. Dyn., 31(3), 561-582. http://doi.org/10.1002/eqe.144
  17. Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic basis for 2000 sac federal emergency management agency steel moment frame guidelines", J. Struct. Eng.-ASCE, 128(4), 526-533. http://doi.org/10.1061/(asce)0733-9445(2002)128:4(526)
  18. Das, R. and Sengur, A. (2010), "Evaluation of ensemble methods for diagnosing of valvular heart disease", Expert Syst. Applicat., 37(7), 5110-5115. http://doi.org/10.1016/j.eswa.2009.12.085
  19. Ding, Y., Wu, D., Su, J., Li, Z.-X., Zong, L. and Feng, K. (2021), "Experimental and numerical investigations on seismic performance of RC bridge piers considering buckling and low-cycle fatigue of high-strength steel bars", Eng. Struct., 227, 111464. http://doi.org/10.1016/j.engstruct.2020.111464
  20. Duan, Y., Chen, Q., Zhang, H., Yun, C.B., Wu, S. and Zhu, Q. (2019), "Cnn-based damage identification method of tied-arch bridge using spatial-spectral information", Smart Struct. Syst., Int. J., 23(5), 507-520. http://doi.org/10.12989/sss.2019.23.5.507
  21. Ferrario, E., Pedroni, N., Zio, E. and Lopez-Caballero, F. (2017), "Bootstrapped artificial neural networks for the seismic analysis of structural systems", Struct. Safety, 67, 70-84. http://doi.org/10.1016/j.strusafe.2017.03.003
  22. Gasparini, D. and Vanmarcke, E. (1976), "Simulated earthquake motions compatible with prescribed response spectra", MIT Department of Civil Engineering Research Report NO. R76-4; Massachusetts Institute of Technology, Cambridge, MA, USA.
  23. Guirguis, J. and Mehanny, S.S.F. (2013), "Evaluating code criteria for regular seismic behavior of continuous concrete box girder bridges with unequal height piers", J. Bridge Eng., 18(6), 486-498. http://doi.org/10.1061/(ASCE)BE.1943-5592.0000383
  24. JTG/T B02-01-2008 (2008), Guidelines for seismic design of highway bridges, Chongqing communications scientific research design institute; Beijing, Ministry of Transport of the People's Republic of China.
  25. Kanai, K. (1957), "Semi-empirical formula for the seismic characteristics of the ground", Bull. Earthq. Res. Inst., 35(2), 309-325. http://doi.org/10.3130/aijsaxx.57.1.0_281
  26. Kiani, J., Camp, C. and Pezeshk, S. (2019), "On the application of machine learning techniques to derive seismic fragility curves", Comput. Struct., 218, 108-122. http://doi.org/10.1016/j.compstruc.2019.03.004
  27. Lai, S.-S. (1982), "Statistical characterization of strong ground motion using power spectral density function", Bull. Seismol. Soc. Am., 72(1), 259-274. https://doi.org/10.1785/BSSA0720010259
  28. Li, J., Song, X. and Fan, L. (2005), "Investigation for displacement ductility capacity of tall piers", Earthq. Eng. Eng. Vib., 25(1), 43-48. https://doi.org/10.3969/j.issn.1000-1301.2005.01.008
  29. Li, C., Chang, K., Cao, L. and Huang, Y. (2021), "Performance of a nonlinear hybrid base isolation system under the ground motions", Soil Dyn. Earthq. Eng., 143, 106589. https://doi.org/10.1016/j.soildyn.2021.106589
  30. Liu, Z. and Zhang, Z. (2017), "Artificial neural network based method for seismic fragility analysis of steel frames", KSCE J. Civil Eng., 22(2), 708-717. http://doi.org/10.1007/s12205-017-1329-8
  31. Mangalathu, S. and Jeon, J.-S. (2019), "Stripe-based fragility analysis of multispan concrete bridge classes using machine learning techniques", Earthq. Eng. Struct. Dyn., 48(11), 1238-1255. http://doi.org/10.1002/eqe.3183
  32. Mangalathu, S., Heo, G. and Jeon, J.-S. (2018), "Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes", Eng. Struct., 162, 166-176. http://doi.org/10.1016/j.engstruct.2018.01.053
  33. Mangalathu, S., Hwang, S.-H., Choi, E. and Jeon, J.-S. (2019), "Rapid seismic damage evaluation of bridge portfolios using machine learning techniques", Eng. Struct., 201, 109785. http://doi.org/10.1016/j.engstruct.2019.109785
  34. Mitchell, J. (2014), "Machine learning methods in chemoinformatics", Wiley Interdiscipl. Rev.: Computat. Molecul. Sci., 4, 468-481. http://doi.org/10.1002/wcms.1183
  35. Murthy, S., Kasif, S. and Salzberg, S. (1996), "A system for induction of oblique decision trees", J. Artif. Intell. Res., 2, 1-32. http://doi.org/10.1613/jair.63
  36. Oh, B.K., Glisic, B., Park, S.W. and Park, H.S. (2020), "Neural network-based seismic response prediction model for building structures using artificial earthquakes", J. Sound Vib., 468, 115109. http://doi.org/10.1016/j.jsv.2019.115109
  37. Onat, O. and Gul, M. (2018), "Application of artificial neural networks to the prediction of out-of-plane response of infill walls subjected to shake table", Smart Struct. Syst., Int. J., 21(4), 521-535. http://doi.org/10.12989/sss.2018.21.4.521
  38. Padgett, J. and Desroches, R. (2008), "Methodology for the development of analytical fragility curves for retrofitted bridges", Earthq. Eng. Struct. Dyn., 37, 1157-1174. http://doi.org/10.1002/eqe.801
  39. Pang, Y., Zhou, X., He, W., Zhong, J. and Hui, O. (2021), "Uniform design-based Gaussian process regression for data-driven rapid fragility assessment of bridges", J. Struct. Eng., 147(4), 04021008. http://doi.org/10.1061/(asce)st.1943-541x.0002953
  40. Saeidpour, A., Chorzepa, M.G., Christian, J. and Durham, S. (2018), "Parameterized fragility assessment of bridges subjected to hurricane events using metamodels and multiple environmental parameters", J. Infrastr. Syst., 24(4), 04018031. http://doi.org/10.1061/(asce)is.1943-555x.0000442
  41. Scott, B.D., Park, R. and Priestley, M.J.N. (1982), "Stress-strain behaviour of concrete confined by overlapping hoops at low and high strain rates", J. Am. Concrete Inst., 79, 13-27.
  42. Taucer, F., Spacone, E. and Filippou, F. (1991), "A fiber beam-column element for seismic response analysis of reinforced concrete structures", Report No. UCB/EERC-91/17; Earthquake Engineering Research Center, College of Engineering, University of California Berkekey, CA, USA.
  43. Wang, X., Shafieezadeh, A. and Ye, A. (2018a), "Optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading ground", Bull. Earthq. Eng., 16(1), 229-257. http://doi.org/10.1007/s10518-017-0199-2
  44. Wang, Z., Pedroni, N., Zentner, I. and Zio, E. (2018b), "Seismic spreading ground", Bull. Earthq. Eng., 16(1), 229-257. http://doi.org/10.1007/s10518-017-0199-2
  45. Wang, Z., Pedroni, N., Zentner, I. and Zio, E. (2018b), "Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment", Eng. Struct., 162, 213-225. http://doi.org/10.1016/j.engstruct.2018.02.024
  46. Wang, L., Li, J., Zhang, S., Zhang, X., Zhang, Q., Chan, M.F., Yang, R. and Sui, J. (2020), "Multi-task autoencoder based classification-regression model for patient-specific VMAT QA", Phys. Medic. Biol., 65(23), 235023. http://doi.org/10.1088/1361-6560/abb31c
  47. Xie, Y., Ebad Sichani, M., Padgett, J.E. and DesRoches, R. (2020), "The promise of implementing machine learning in earthquake engineering: A state-of-the-art review", Earthq. Spectra, 36(4), 1769-1801. http://doi.org/10.1177/8755293020919419
  48. Xu, J., Spencer Jr, B.F. and Lu, X. (2017), "Performance-based optimization of nonlinear structures subject to stochastic dynamic loading", Eng. Struct., 134, 334-345. http://doi.org/10.1016/j.engstruct.2016.12.051
  49. Xu, J., Fermandois, G.A., Spencer, B.F., Jr. and Lu, X. (2018), "Stochastic optimisation of buckling restrained braced frames under seismic loading", Struct. Infrastr. Eng., 14(10), 1386-1401. http://doi.org/10.1080/15732479.2018.1443144
  50. Zhang, L. and Suganthan, P.N. (2015a), "Oblique decision tree ensemble via multisurface proximal support vector machine", IEEE Trans. Cybern., 45(10), 2165-2176. http://doi.org/10.1109/tcyb.2014.2366468
  51. Zhang, L. and Suganthan, P.N. (2015b), "Oblique decision tree ensemble via multisurface proximal support vector machine", 45(10), 2165-2176. http://doi.org/10.1109/TCYB.2014.2366468
  52. Zhang, L. and Suganthan, P. (2017), "Benchmarking ensemble classifiers with novel co-trained kernal ridge regression and random vector functional link ensembles [research frontier]", IEEE Computat. Intell. Magaz., 12, 61-72. http://doi.org/10.1109/MCI.2017.2742867