과제정보
The authors gratefully acknowledge the support by the National Natural Science Foundation (No. 51908348 & 51778354). The corresponding author also acknowledges the support of Shanghai Post-doctoral Excellence Program.
참고문헌
- Aguirre, D.A. and Montejo, L.A. (2014), "Damping and frequency changes induced by increasing levels of inelastic seismic demand", Smart Struct. Syst., Int. J., 14(3), 445-468. http://doi.org/10.12989/sss.2014.14.3.445
- Airouche, A., Bechtoula, H., Aknouche, H., Thoen, B.K. and Benouar, D. (2014), "Experimental identification of the six dof cgs, algeria, shaking table system", Smart Struct. Syst., Int. J., 13(1), 137-154. http://doi.org/10.12989/sss.2014.13.1.137
- Alam, R., Peden, D. and Lach, J. (2020), "Wearable respiration monitoring: Interpretable inference with context and sensor biomarkers", IEEE J. Biomed. Health Inform., 25(6), 1938-1948. http://doi.org/10.1109/jbhi.2020.3035776
- Basheer, I.A. and Hajmeer, M. (2000), "Artificial neural networks: Fundamentals, computing, design, and application", J. Microbiol. Methods, 43(1), 3-31. http://doi.org/10.1016/S0167-7012(00)00201-3
- Boggs, D. (1997), "Acceleration indexes for human comfort in tall buildings-Peak or RMS", CTBUH Monogr., 1-21.
- Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32. http://doi.org/10.1023/a:1010933404324
- Chen, X. (2020), "System fragility assessment of tall-pier bridges subjected to near-fault ground motions", J. Bridge Eng., 25(3), 04019143. http://doi.org/10.1061/(asce)be.1943-5592.0001526
- Chen, X. and Li, C. (2020), "Seismic performance of tall pier bridges retrofitted with lead rubber bearings and rocking foundation", Eng. Struct., 212, 110529. http://doi.org/10.1016/j.engstruct.2020.110529
- Chen, K., Gong, S., Xiang, T. and Loy, C.C. (2013), "Cumulative attribute space for age and crowd density estimation", Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June.
- Chen, Z.H., Ni, Y.Q. and Or, S.W. (2015), "Characterization and modeling of a self-sensing mr damper under harmonic loading", Smart Struct. Syst., Int. J., 15(4), 1103-1120. http://doi.org/10.12989/sss.2015.15.4.1103
- Chen, X., Li, J. and Liu, X. (2017), "Seismic performance of tall piers influenced by higher-mode effects of piers", J. Tongji Univ. (Natural Science), 45(02), 159-166.
- Chen, X., Guan, Z., Li, J. and Spencer, B.F. (2018a), "Shake table tests of tall-pier bridges to evaluate seismic performance", J. Bridge Eng., 23(9), 04018058. http://doi.org/10.1061/(asce)be.1943-5592.0001264
- Chen, X., Guan, Z., Spencer, B.F. and Li, J. (2018b), "A simplified procedure for estimating nonlinear seismic demand of tall piers", Eng. Struct., 174, 778-791. http://doi.org/10.1016/j.engstruct.2018.07.102
- Chen, P.-C., Hsu, S.-C., Zhong, Y.-J. and Wang, S.-J. (2019), "Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry", Smart Struct. Syst., Int. J., 23(1), 91-106. http://doi.org10.12989/sss.2019.23.1.091
- Chen, X., Xiang, N., Li, J., and Guan, Z. (2020), "Influence of near-fault pulse-like motion characteristics on seismic performance of tall pier bridges with fragility analysis", J. Earthq. Eng., 1-22. http://doi.org/10.1080/13632469.2020.1751345
- Chopra, A.K. and Goel, R.K. (2002), "A modal pushover analysis procedure for estimating seismic demands for buildings", Earthq. Eng. Struct. Dyn., 31(3), 561-582. http://doi.org/10.1002/eqe.144
- Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic basis for 2000 sac federal emergency management agency steel moment frame guidelines", J. Struct. Eng.-ASCE, 128(4), 526-533. http://doi.org/10.1061/(asce)0733-9445(2002)128:4(526)
- Das, R. and Sengur, A. (2010), "Evaluation of ensemble methods for diagnosing of valvular heart disease", Expert Syst. Applicat., 37(7), 5110-5115. http://doi.org/10.1016/j.eswa.2009.12.085
- Ding, Y., Wu, D., Su, J., Li, Z.-X., Zong, L. and Feng, K. (2021), "Experimental and numerical investigations on seismic performance of RC bridge piers considering buckling and low-cycle fatigue of high-strength steel bars", Eng. Struct., 227, 111464. http://doi.org/10.1016/j.engstruct.2020.111464
- Duan, Y., Chen, Q., Zhang, H., Yun, C.B., Wu, S. and Zhu, Q. (2019), "Cnn-based damage identification method of tied-arch bridge using spatial-spectral information", Smart Struct. Syst., Int. J., 23(5), 507-520. http://doi.org/10.12989/sss.2019.23.5.507
- Ferrario, E., Pedroni, N., Zio, E. and Lopez-Caballero, F. (2017), "Bootstrapped artificial neural networks for the seismic analysis of structural systems", Struct. Safety, 67, 70-84. http://doi.org/10.1016/j.strusafe.2017.03.003
- Gasparini, D. and Vanmarcke, E. (1976), "Simulated earthquake motions compatible with prescribed response spectra", MIT Department of Civil Engineering Research Report NO. R76-4; Massachusetts Institute of Technology, Cambridge, MA, USA.
- Guirguis, J. and Mehanny, S.S.F. (2013), "Evaluating code criteria for regular seismic behavior of continuous concrete box girder bridges with unequal height piers", J. Bridge Eng., 18(6), 486-498. http://doi.org/10.1061/(ASCE)BE.1943-5592.0000383
- JTG/T B02-01-2008 (2008), Guidelines for seismic design of highway bridges, Chongqing communications scientific research design institute; Beijing, Ministry of Transport of the People's Republic of China.
- Kanai, K. (1957), "Semi-empirical formula for the seismic characteristics of the ground", Bull. Earthq. Res. Inst., 35(2), 309-325. http://doi.org/10.3130/aijsaxx.57.1.0_281
- Kiani, J., Camp, C. and Pezeshk, S. (2019), "On the application of machine learning techniques to derive seismic fragility curves", Comput. Struct., 218, 108-122. http://doi.org/10.1016/j.compstruc.2019.03.004
- Lai, S.-S. (1982), "Statistical characterization of strong ground motion using power spectral density function", Bull. Seismol. Soc. Am., 72(1), 259-274. https://doi.org/10.1785/BSSA0720010259
- Li, J., Song, X. and Fan, L. (2005), "Investigation for displacement ductility capacity of tall piers", Earthq. Eng. Eng. Vib., 25(1), 43-48. https://doi.org/10.3969/j.issn.1000-1301.2005.01.008
- Li, C., Chang, K., Cao, L. and Huang, Y. (2021), "Performance of a nonlinear hybrid base isolation system under the ground motions", Soil Dyn. Earthq. Eng., 143, 106589. https://doi.org/10.1016/j.soildyn.2021.106589
- Liu, Z. and Zhang, Z. (2017), "Artificial neural network based method for seismic fragility analysis of steel frames", KSCE J. Civil Eng., 22(2), 708-717. http://doi.org/10.1007/s12205-017-1329-8
- Mangalathu, S. and Jeon, J.-S. (2019), "Stripe-based fragility analysis of multispan concrete bridge classes using machine learning techniques", Earthq. Eng. Struct. Dyn., 48(11), 1238-1255. http://doi.org/10.1002/eqe.3183
- Mangalathu, S., Heo, G. and Jeon, J.-S. (2018), "Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes", Eng. Struct., 162, 166-176. http://doi.org/10.1016/j.engstruct.2018.01.053
- Mangalathu, S., Hwang, S.-H., Choi, E. and Jeon, J.-S. (2019), "Rapid seismic damage evaluation of bridge portfolios using machine learning techniques", Eng. Struct., 201, 109785. http://doi.org/10.1016/j.engstruct.2019.109785
- Mitchell, J. (2014), "Machine learning methods in chemoinformatics", Wiley Interdiscipl. Rev.: Computat. Molecul. Sci., 4, 468-481. http://doi.org/10.1002/wcms.1183
- Murthy, S., Kasif, S. and Salzberg, S. (1996), "A system for induction of oblique decision trees", J. Artif. Intell. Res., 2, 1-32. http://doi.org/10.1613/jair.63
- Oh, B.K., Glisic, B., Park, S.W. and Park, H.S. (2020), "Neural network-based seismic response prediction model for building structures using artificial earthquakes", J. Sound Vib., 468, 115109. http://doi.org/10.1016/j.jsv.2019.115109
- Onat, O. and Gul, M. (2018), "Application of artificial neural networks to the prediction of out-of-plane response of infill walls subjected to shake table", Smart Struct. Syst., Int. J., 21(4), 521-535. http://doi.org/10.12989/sss.2018.21.4.521
- Padgett, J. and Desroches, R. (2008), "Methodology for the development of analytical fragility curves for retrofitted bridges", Earthq. Eng. Struct. Dyn., 37, 1157-1174. http://doi.org/10.1002/eqe.801
- Pang, Y., Zhou, X., He, W., Zhong, J. and Hui, O. (2021), "Uniform design-based Gaussian process regression for data-driven rapid fragility assessment of bridges", J. Struct. Eng., 147(4), 04021008. http://doi.org/10.1061/(asce)st.1943-541x.0002953
- Saeidpour, A., Chorzepa, M.G., Christian, J. and Durham, S. (2018), "Parameterized fragility assessment of bridges subjected to hurricane events using metamodels and multiple environmental parameters", J. Infrastr. Syst., 24(4), 04018031. http://doi.org/10.1061/(asce)is.1943-555x.0000442
- Scott, B.D., Park, R. and Priestley, M.J.N. (1982), "Stress-strain behaviour of concrete confined by overlapping hoops at low and high strain rates", J. Am. Concrete Inst., 79, 13-27.
- Taucer, F., Spacone, E. and Filippou, F. (1991), "A fiber beam-column element for seismic response analysis of reinforced concrete structures", Report No. UCB/EERC-91/17; Earthquake Engineering Research Center, College of Engineering, University of California Berkekey, CA, USA.
- Wang, X., Shafieezadeh, A. and Ye, A. (2018a), "Optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading ground", Bull. Earthq. Eng., 16(1), 229-257. http://doi.org/10.1007/s10518-017-0199-2
- Wang, Z., Pedroni, N., Zentner, I. and Zio, E. (2018b), "Seismic spreading ground", Bull. Earthq. Eng., 16(1), 229-257. http://doi.org/10.1007/s10518-017-0199-2
- Wang, Z., Pedroni, N., Zentner, I. and Zio, E. (2018b), "Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment", Eng. Struct., 162, 213-225. http://doi.org/10.1016/j.engstruct.2018.02.024
- Wang, L., Li, J., Zhang, S., Zhang, X., Zhang, Q., Chan, M.F., Yang, R. and Sui, J. (2020), "Multi-task autoencoder based classification-regression model for patient-specific VMAT QA", Phys. Medic. Biol., 65(23), 235023. http://doi.org/10.1088/1361-6560/abb31c
- Xie, Y., Ebad Sichani, M., Padgett, J.E. and DesRoches, R. (2020), "The promise of implementing machine learning in earthquake engineering: A state-of-the-art review", Earthq. Spectra, 36(4), 1769-1801. http://doi.org/10.1177/8755293020919419
- Xu, J., Spencer Jr, B.F. and Lu, X. (2017), "Performance-based optimization of nonlinear structures subject to stochastic dynamic loading", Eng. Struct., 134, 334-345. http://doi.org/10.1016/j.engstruct.2016.12.051
- Xu, J., Fermandois, G.A., Spencer, B.F., Jr. and Lu, X. (2018), "Stochastic optimisation of buckling restrained braced frames under seismic loading", Struct. Infrastr. Eng., 14(10), 1386-1401. http://doi.org/10.1080/15732479.2018.1443144
- Zhang, L. and Suganthan, P.N. (2015a), "Oblique decision tree ensemble via multisurface proximal support vector machine", IEEE Trans. Cybern., 45(10), 2165-2176. http://doi.org/10.1109/tcyb.2014.2366468
- Zhang, L. and Suganthan, P.N. (2015b), "Oblique decision tree ensemble via multisurface proximal support vector machine", 45(10), 2165-2176. http://doi.org/10.1109/TCYB.2014.2366468
- Zhang, L. and Suganthan, P. (2017), "Benchmarking ensemble classifiers with novel co-trained kernal ridge regression and random vector functional link ensembles [research frontier]", IEEE Computat. Intell. Magaz., 12, 61-72. http://doi.org/10.1109/MCI.2017.2742867