Acknowledgement
The work described in this paper was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. PolyU 152767/16E) and in part by a grant from the National Science Foundation of China (Grant No. 12072312). The authors would also like to appreciate the funding support by the Innovation and Technology Commission of the Hong Kong SAR Government (Grant No. K-BBY1).
References
- Abed-Meraim, K., Xiang, Y., Manton, J.H. and Hua, Y. (2001), "Blind source-separation using second-order cyclostationary statistics", IEEE Transact. Signal Process., 49(4), 694-701. https://doi.org/10.1109/78.912913
- Antoni, J. and Chauhan, S. (2013), "A study and extension of second-order blind source separation to operational modal analysis", J. Sound Vib., 332(4), 1079-1106. https://doi.org/10.1016/j.jsv.2012.09.016
- Beck, J.L. and Katafygiotis, L.S. (1998), "Updating models and their uncertainties. I: Bayesian statistical framework", J. Eng. Mech., 124(4), 455-461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)
- Belouchrani, A. and Amin, M.G. (1998), "Blind source separation based on time-frequency signal representations", IEEE Transact. Signal Process., 46(11), 2888-2897. https://doi.org/10.1109/78.726803
- Belouchrani, A., Abed-Meraim, K., Cardoso, J.F. and Moulines, E. (1997), "A blind source separation technique using second-order statistics", IEEE Transact. Signal Process., 45(2), 434-444. https://doi.org/10.1109/78.554307
- Bouguerriou, N., Haritopoulos, M., Capdessus, C. and Allam, L. (2005), "Novel cyclostationarity-based blind source separation algorithm using second order statistical properties: theory and application to the bearing defect diagnosis", Mech. Syst. Signal Process., 19(6), 1260-1281. https://doi.org/10.1016/j.ymssp.2005.07.007
- Brewick, P.T. and Smyth, A.W. (2017), "Increasing the efficiency and efficacy of second-order blind identification (SOBI) methods", Struct. Control Health Monitor., 24(6), e1921. https://doi.org/10.1002/stc.1921
- Brownjohn, J.M., De Stefano, A., Xu, Y.L., Wenzel, H. and Aktan, A.E. (2011), "Vibration-based monitoring of civil infrastructure: challenges and successes", J. Civil Struct. Health Monitor., 1(3-4), 79-95. https://doi.org/10.1007/s13349-011-0009-5
- Bull, L.A., Worden, K., Fuentes, R., Manson, G., Cross, E.J. and Dervilis, N. (2019), "Outlier ensembles: a robust method for damage detection and unsupervised feature extraction from high-dimensional data", J. Sound Vib., 453, 126-150. https://doi.org/10.1016/j.jsv.2019.03.025
- Carden, E.P. and Fanning, P. (2004), "Vibration based condition monitoring: a review", Struct. Health Monitor., 3(4), 355-377. https://doi.org/10.1177/1475921704047500
- Ciambella, J., Pau, A. and Vestroni, F. (2019), "Modal curvature-based damage localization in weakly damaged continuous beams", Mech. Syst. Signal Process., 121, 171-182. https://doi.org/10.1016/j.ymssp.2018.11.012
- Deraemaeker, A. and Worden, K. (2010), New Trends in Vibration Based Structural Health Monitoring, Springer, New York, USA.
- Dessi, D. and Camerlengo, G. (2015), "Damage identification techniques via modal curvature analysis: overview and comparison", Mech. Syst. Signal Process., 52, 181-205. https://doi.org/10.1016/j.ymssp.2014.05.031
- Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monitor., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
- Ghiasi, R., Ghasemi, M.R. and Chan, T.H. (2021), "Optimum feature selection for SHM of benchmark structures using efficient AI mechanism", Smart Struct. Syst., Int. J., 27(4), 623-640. https://doi.org/10.12989/sss.2021.27.4.623
- Giraldo, D.F., Song, W., Dyke, S.J. and Caicedo, J.M. (2009), "Modal identification through ambient vibration: comparative study", J. Eng. Mech., 135(8), 759-770. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:8(759)
- Goyal, D. and Pabla, B.S. (2016), "The vibration monitoring methods and signal processing techniques for structural health monitoring: a review", Arch. Computat. Methods Eng., 23(4), 585-594. https://doi.org/10.1007/s11831-015-9145-0
- He, C., Li, H. and Zhao, X. (2018), "Weak characteristic determination for blade crack of centrifugal compressors based on underdetermined blind source separation", Measurement, 128, 545-557. https://doi.org/10.1016/j.measurement.2018.06.047
- Hyvarinen, A. and Oja, E. (2000), "Independent component analysis: algorithms and applications", Neural Networks, 13(4-5), 411-430. https://doi.org/10.1016/S0893-6080(00)00026-5
- Kay, S.M. (1984), "Accurate frequency estimation at low signal-to-noise ratio", IEEE Transact. Acoust. Speech Signal Process., 32(3), 540-547. https://doi.org/10.1109/TASSP.1984.1164358
- Kerschen, G., Poncelet, F. and Golinval, J.C. (2007), "Physical interpretation of independent component analysis in structural dynamics", Mech. Syst. Signal Process., 21(4), 1561-1575. https://doi.org/10.1016/j.ymssp.2006.07.009
- Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021
- Li, H. and Ou, J. (2016), "The state of the art in structural health monitoring of cable-stayed bridges", J. Civil Struct. Health Monitor., 6(1), 43-67. https://doi.org/10.1007/s13349-015-0115-x
- Li, H.N., Ren, L., Jia, Z.G., Yi, T.H. and Li, D.S. (2016), "State-of-the-art in structural health monitoring of large and complex civil infrastructures", J. Civil Struct. Health Monitor., 6(1), 3-16. https://doi.org/10.1007/s13349-015-0108-9
- Li, G., Tang, G., Wang, H. and Wang, Y. (2019), "Blind source separation of composite bearing vibration signals with low-rank and sparse decomposition", Measurement, 145, 323-334. https://doi.org/10.1016/j.measurement.2019.05.099
- McNeill, S.I. and Zimmerman, D.C. (2008), "A framework for blind modal identification using joint approximate diagonalization", Mech. Syst. Signal Process., 22(7), 1526-1548. https://doi.org/10.1016/j.ymssp.2008.01.010
- Moughty, J.J. and Casas, J.R. (2017), "A state of the art review of modal-based damage detection in bridges: development, challenges, and solutions", Appl. Sci., 7(5), 510. https://doi.org/10.3390/app7050510
- Musafere, F., Sadhu, A. and Liu, K. (2016), "Towards damage detection using blind source separation integrated with time-varying auto-regressive modeling", Smart Mater. Struct., 25(1), 015013. https://doi.org/10.1088/0964-1726/25/1/015013
- Nagarajaiah, S. and Yang, Y. (2015), "Blind modal identification of output-only non-proportionally-damped structures by timefrequency complex independent component analysis", Smart Struct. Syst., Int. J., 15(1), 81-97. http://dx.doi.org/10.12989/.2015.15.1.081
- Overschee, P.V. and Moor, B.D. (1996), Subspace Identification for Linear Systems: Theory Implementation Application, Kluwer Academic Publishers, Netherlands.
- Parra, L. and Sajda, P. (2003), "Blind source separation via generalized eigenvalue decomposition", J. Mach. Learn. Res., 4, 1261-1269. https://doi.org/10.1162/jmlr.2003.4.7-8.1261
- Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: a review", J. Dyn. Syst. Measure. Control, 123(4), 659-667. https://doi.org/10.1115/1.1410370
- Prajapat, K. and Ray-Chaudhuri, S. (2018), "Detection of multiple damages employing best achievable eigenvectors under Bayesian inference", J. Sound Vib., 422, 237-263. https://doi.org/10.1016/j.jsv.2018.02.012
- Rainieri, C., Magalhaes, F., Gargaro, D., Fabbrocino, G. and Cunha, A. (2019), "Predicting the variability of natural frequencies and its causes by Second-Order Blind Identification", Struct. Health Monitor., 18(2), 486-507. https://doi.org/10.1177/1475921718758629
- Sadhu, A. and Narasimhan, S. (2014), "A decentralized blind source separation algorithm for ambient modal identification in the presence of narrowband disturbances", Struct. Control Health Monitor., 21(3), 282-302. https://doi.org/10.1002/stc.1558
- Sadhu, A., Narasimhan, S. and Antoni, J. (2017), "A review of output-only structural mode identification literature employing blind source separation methods", Mech. Syst. Signal Process., 94, 415-431. https://doi.org/10.1016/j.ymssp.2017.03.001
- Seo, J., Hu, J.W. and Lee, J. (2016), "Summary review of structural health monitoring applications for highway bridges", J. Perform. Constr. Facil., 30(4), 04015072. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000824
- Sohn, H. and Law, K.H. (1997), "A Bayesian probabilistic approach for structure damage detection", Earthq. Eng. Struct. Dyn., 26(12), 1259-1281. https://doi.org/10.1002/(SICI)1096-9845(199712)26:12<1259::AID-EQE709>3.0.CO;2-3
- Spencer, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart sensing technology: opportunities and challenges", Struct. Control Health Monitor., 11(4), 349-368. https://doi.org/10.1002/stc.48
- Tong, L., Soon, V.C., Huang, Y.F. and Liu, R. (1990), "AMUSE: a new blind identification algorithm", Proceeding of IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA.
- Vanik, M.W., Beck, J.L. and Au, S.K. (2000), "Bayesian probabilistic approach to structural health monitoring", J. Eng. Mech., 126(7), 738-745. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(738)
- Vanlanduit, S., Parloo, E., Cauberghe, B., Guillaume, P. and Verboven, P. (2005), "A robust singular value decomposition for damage detection under changing operating conditions and structural uncertainties", J. Sound Vib., 284(3-5), 1033-1050. https://doi.org/10.1016/j.jsv.2004.07.016
- Weng, J.H., Loh, C.H. and Yang, J.N. (2009), "Experimental study of damage detection by data-driven subspace identification and finite-element model updating", J. Struct. Eng., 135(12), 1533-1544. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000079
- Wu, W.H., Jhou, J.W., Chen, C.C. and Lai, G. (2019), "A novel recursive stochastic subspace identification algorithm with its application in long-term structural health monitoring of office buildings", Smart Struct. Syst., Int. J., 24(4), 459-474. https://doi.org/10.12989/sss.2019.24.4.459
- Yang, Y.B. and Chen, W.F. (2016), "Extraction of bridge frequencies from a moving test vehicle by stochastic subspace identification", J. Bridge Eng., 21(3), 04015053. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000792
- Yang, Y. and Nagarajaiah, S. (2014), "Blind identification of damage in time-varying systems using independent component analysis with wavelet transform", Mech. Syst. Signal Process., 47(1-2), 3-20. https://doi.org/10.1016/j.ymssp.2012.08.029
- Yeredor, A. (2000), "Blind separation of Gaussian sources via second-order statistics with asymptotically optimal weighting", IEEE Signal Process. Lett., 7(7), 197-200. https://doi.org/10.1109/97.847367
- Ying, Z.G., Ni, Y.Q. and Kang, L. (2019), "Mode localization characteristics of damaged quasiperiodically supported beam structures with local weak coupling", Struct. Control Health Monitor., 26(6), e2351. https://doi.org/10.1002/stc.2351
- Zhang, F.L., Ni, Y.Q., Ni, Y.C. and Wang, Y.W. (2016), "Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method", Smart Struct. Syst., Int. J., 17(2), 209-230. http://dx.doi.org/10.12989/sss.2016.17.2.209