액정 엘라스토머 기반 소프트 액추에이터

Liquid Crystal Elastomer-Based Soft Actuators

  • 배재희 (부산대학교 응용화학공학부) ;
  • 김금비 (부산대학교 응용화학공학부) ;
  • 최수비 (부산대학교 응용화학공학부) ;
  • 안석균 (부산대학교 응용화학공학부)
  • Bae, Jaehee (School of Chemical Engineering, Pusan National University) ;
  • Kim, Keumbee (School of Chemical Engineering, Pusan National University) ;
  • Choi, Subi (School of Chemical Engineering, Pusan National University) ;
  • Ahn, Suk-kyun (School of Chemical Engineering, Pusan National University)
  • 발행 : 2021.12.31

초록

자극응답성 액정 엘라스토머(liquid crystal elastomer)는 하이드로겔(hydrogel), 형상 기억 고분자(shape memory polymer)와 더불어 생체 특성을 모방한 인공 근육, 소프트 액추에이터 및 소프트 로봇을 위한 스마트 소재로 최근 높은 관심을 받고 있다. 특히, 액정 엘라스토머는 고무 탄성과 액정 이방성이 결합된 비등방성 탄성 고분자로, 열, 빛, 전기 및 수분과 같은 외부자극에 반응하여 가역적이며, 액정 분자들의 배향조절을 통한 프로그램된 변형이 가능하다. 액정 엘라스토머가 개념 증명을 하는 수준을 넘어 실제로 유용한 소프트 액추에이터 및 로봇 시스템에 적용되기 위해서는 우수한 구동력 및 작업 용량, 높은 구동 변형률, 빠른 응답 시간, 낮은 구동 온도, 다양한 외부 자극반응성 및 높은 에너지 전환 효율 등을 확보하는 것이 중요하다. 본 기고문에서는 액정 엘라스토머의 개념에 대해 소개하고, 이러한 소재가 소프트 액추에이터로써 광범위하게 활용될 수 있도록 다양한 성능들을 향상시킬 수 있는 방법에 대해 소개하고자 한다.

키워드

과제정보

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단(신진연구자지원사업 및 소재융합혁신기술개발사업)의 지원을 받아 작성되었습니다(NRF-2019R1C1C1006048 및 NRF-2019M3D1A2103918).

참고문헌

  1. Y. Ji, Y. Bai, X. Liu, and K. Jia, Progress of liquid crystal polyester (LCP) for 5G application, Adv. Ind. Eng. Polym. Res., 3, 160-174 (2020). https://doi.org/10.1016/j.aiepr.2020.10.005
  2. P.G. De Gennes, Reflexions sur un type de polymeres nematiques, C. R. Acad. Sci. Paris, 281, 101-103 (1975).
  3. J. Kupfer and H. Finkelmann, Nematic liquid single crystal elastomers, Makromol. Chem. Rapid Comm., 12, 717-726 (1991). https://doi.org/10.1002/marc.1991.030121211
  4. K. M. Herbert, H. E. Fowler, J. M. McCracken, K. R. Schlafmann, J. A. Koch, and T. J. White, Synthesis and alignment of liquid crystalline elastomers, Nat. Rev. Mater. (2021).
  5. T. J. White and D. J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers, Nat. Mater., 14, 1087-98 (2015). https://doi.org/10.1038/nmat4433
  6. D. Mistry, N. A. Traugutt, K. Yu, and C. M. Yakacki, Processing and reprocessing liquid crystal elastomer actuators, J. Appl. Phys., 129, 130901 (2021). https://doi.org/10.1063/5.0044533
  7. C. P. Ambulo, S. Tasmim, S. Wang, M. K. Abdelrahman, P. E. Zimmern, and T. H. Ware, Processing advances in liquid crystal elastomers provide a path to biomedical applications, J. Appl. Phys., 128, 140901 (2020). https://doi.org/10.1063/5.0021143
  8. R. S. Kularatne, H. Kim, J. M. Boothby, and T. H. Ware, Liquid crystal elastomer actuators: Synthesis, alignment, and applications, J. Polym. Sci., Part B: Polym. Phys., 55, 395-411 (2017). https://doi.org/10.1002/polb.24287
  9. C. Ohm, M. Brehmer, and R. Zentel, Applications of Liquid Crystalline Elastomers, Adv. Polym. Sci., 250, 49-94 (2012). https://doi.org/10.1007/12_2011_164
  10. C. Ohm, M. Brehmer, and R. Zentel, Liquid Crystalline Elastomers as Actuators and Sensors, Adv. Mater., 22, 3366-3387 (2010). https://doi.org/10.1002/adma.200904059
  11. C. Zhang, P. Zhu, Y. Lin, W. Tang, Z. Jiao, H. Yang, and J. Zou, Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications, Bio-Des. Manuf., 4, 123-145 (2021). https://doi.org/10.1007/s42242-020-00099-z
  12. M. O. Saed, R. H. Volpe, N. A. Traugutt, R. Visvanathan, N. A. Clark, and C. M. Yakacki, High strain actuation liquid crystal elastomers via modulation of mesophase structure, Soft Matter, 13, 7537-7547 (2017). https://doi.org/10.1039/C7SM01380A
  13. H. Kim, J. M. Boothby, S. Ramachandran, C. D. Lee, and T. H. Ware, Tough, Shape-Changing Materials: Crystallized Liquid Crystal Elastomers, Macromolecules, 50, 4267-4275 (2017). https://doi.org/10.1021/acs.macromol.7b00567
  14. H.-F. Lu, M. Wang, X.-M. Chen, B.-P. Lin, and H. Yang, Interpenetrating Liquid-Crystal Polyurethane/Polyacrylate Elastomer with Ultrastrong Mechanical Property, J. Am. Chem. Soc., 141, 14364-14369 (2019). https://doi.org/10.1021/jacs.9b06757
  15. T. Guin, M. J. Settle, B. A. Kowalski, A. D. Auguste, R. V. Beblo, G. W. Reich, and T. J. White, Layered liquid crystal elastomer actuators, Nat. Commun., 9, 2531 (2018). https://doi.org/10.1038/s41467-018-04911-4
  16. Y. Yang, W. Zhan, R. Peng, C. He, X. Pang, D. Shi, T. Jiang, and Z. Lin, Graphene-Enabled Superior and Tunable Photomechanical Actuation in Liquid Crystalline Elastomer Nanocomposites, Adv. Mater., 27, 6376-6381 (2015). https://doi.org/10.1002/adma.201503680
  17. J. Liu, Y. Gao, H. Wang, R. Poling-Skutvik, C. O. Osuji, and S. Yang, Shaping and Locomotion of Soft Robots Using Filament Actuators Made from Liquid Crystal Elastomer -Carbon Nanotube Composites, Adv. Intell. Syst., 2, 1900163 (2020). https://doi.org/10.1002/aisy.201900163
  18. H. Wermter and H. Finkelmann, Liquid crystalline elastomers as artificial muscles, e-Polymers, 1 (2001).
  19. T. H. Ware and T. J. White, Programmed liquid crystal elastomers with tunable actuation strain, Polym. Chem., 6, 4835-4844 (2015). https://doi.org/10.1039/C5PY00640F
  20. S.-k. Ahn, T. H. Ware, K. M. Lee, V. P. Tondiglia, and T. J. White, Photoinduced Topographical Feature Development in Blueprinted Azobenzene-Functionalized Liquid Crystalline Elastomers, Adv. Funct. Mater., 26, 5819-5826 (2016). https://doi.org/10.1002/adfm.201601090
  21. H.-H. Yoon, D.-Y. Kim, K.-U. Jeong, and S.-k. Ahn, Surface Aligned Main-Chain Liquid Crystalline Elastomers: Tailored Properties by the Choice of Amine Chain Extenders, Macromolecules, 51, 1141-1149 (2018). https://doi.org/10.1021/acs.macromol.7b02514
  22. M. O. Saed, C. P. Ambulo, H. Kim, R. De, V. Raval, K. Searles, D. A. Siddiqui, J. M. O. Cue, M. C. Stefan, M. R. Shankar, and T. H. Ware, Molecularly-Engineered, 4D-Printed Liquid Crystal Elastomer Actuators, Adv. Funct. Mater., 29, 1806412 (2019). https://doi.org/10.1002/adfm.201806412
  23. R. K. Shaha, A. H. Torbati, and C. P. Frick, Body-temperature shape-shifting liquid crystal elastomers, J. Appl. Polym. Sci., 138, 50136 (2021). https://doi.org/10.1002/app.50136
  24. Y. Wang, A. Dang, Z. Zhang, R. Yin, Y. Gao, L. Feng, and S. Yang, Repeatable and Reprogrammable Shape Morphing from Photoresponsive Gold Nanorod/Liquid Crystal Elastomers, Adv. Mater., 32, 2004270 (2020). https://doi.org/10.1002/adma.202004270
  25. H. Kim, J. A. Lee, C. P. Ambulo, H. B. Lee, S. H. Kim, V. V. Naik, C. S. Haines, A. E. Aliev, R. Ovalle-Robles, R. H. Baughman, and T. H. Ware, Intelligently Actuating Liquid Crystal Elastomer-Carbon Nanotube Composites, Adv. Funct. Mater., 29, 1905063 (2019). https://doi.org/10.1002/adfm.201905063
  26. A. Kaiser, M. Winkler, S. Krause, H. Finkelmann, and A. M. Schmidt, Magnetoactive liquid crystal elastomer nanocomposites, J. Mater. Chem., 19, 538-543 (2009). https://doi.org/10.1039/b813120c
  27. T. Guin, B. A. Kowalski, R. Rao, A. D. Auguste, C. A. Grabowski, P. F. Lloyd, V. P. Tondiglia, B. Maruyama, R. A. Vaia, and T. J. White, Electrical Control of Shape in Voxelated Liquid Crystalline Polymer Nanocomposites, ACS Appl. Mater. Interfaces, 10, 1187-1194 (2018). https://doi.org/10.1021/acsami.7b13814
  28. Q. He, Z. Wang, Z. Song, and S. Cai, Bioinspired Design of Vascular Artificial Muscle, Adv. Mater. Technol., 4, 1800244 (2019). https://doi.org/10.1002/admt.201800244
  29. T. H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia, and T .J. White, Voxelated liquid crystal elastomers, Science, 347, 982-984 (2015). https://doi.org/10.1126/science.1261019
  30. K. Kim, Y. Guo, J. Bae, S. Choi, H. Y. Song, S. Park, K. Hyun, and S.-K. Ahn, 4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators, Small, 17, 2100910 (2021). https://doi.org/10.1002/smll.202100910
  31. Y. Yu, M. Nakano, and T. Ikeda, Directed bending of a polymer film by light, Nature, 425, 145-145 (2003). https://doi.org/10.1038/425145a
  32. C. Feng, C. P. H. Rajapaksha, J. M. Cedillo, C. Piedrahita, J. Cao, V. Kaphle, B. Lussem, T. Kyu, and A. Jakli, Electroresponsive Ionic Liquid Crystal Elastomers, Macromol. Rapid Commun., 40, 1900299 (2019). https://doi.org/10.1002/marc.201900299
  33. Q. He, Z. Wang, Y. Wang, A. Minori, M. T. Tolley, and S. Cai, Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation, Sci. Adv., 5, eaax5746 (2019).
  34. J. Zhang, Y. Guo, W. Hu, R. H. Soon, Z. S. Davidson, and M. Sitti, Liquid Crystal Elastomer-Based Magnetic Composite Films for Reconfigurable Shape-Morphing Soft Miniature Machines, Adv. Mater., 33, 2006191 (2021). https://doi.org/10.1002/adma.202006191