폐플라스틱 촉매 열분해를 통한 재생 연료 및 화학제품 생산 기술 연구동향

Recent Research Trend in the Catalytic Pyrolysis of Waste Plastics for the Production of Renewable Fuels and Chemicals

  • 김영민 (대구대학교 환경공학과) ;
  • 임세정 (대구대학교 환경공학과) ;
  • 김지찬 (부산대학교 응용화학공학부) ;
  • 제정호 (부산대학교 응용화학공학부)
  • Kim, Young Min (Department of Environmental Engineering, Daegu University) ;
  • Lim, Se Jeong (Department of Environmental Engineering, Daegu University) ;
  • Kim, Jichan (School of Chemical Engineering, Pusan National University) ;
  • Jae, Jungho (School of Chemical Engineering, Pusan National University)
  • 발행 : 2021.04.30

초록

최근 폐플라스틱의 사용량 증가와 미세플라스틱으로 인한 해양 오염 및 생태계 축적 등의 부정적인 영향으로 인해 플라스틱 업사이클링(upcycling) 및 리파이너리(refinery) 기술에 대한 관심이 증가하고 있다. 화학적 재활용 방법 중의 하나로, 폐플라스틱의 열분해를 통해서 재생 연료 및 화학물질을 생산하는 연구는 90년도에 활발히 진행된 바 있고, 최근의 환경오염에 대한 대응으로서 다시 많은 관심을 받고 있다. 폐플라스틱을 효율적으로 분해하기 위해서는 촉매를 사용하여 분해 속도를 제어해 주어야 하며, 사용된 촉매의 특성에 따라 최종 생성물의 성상이 크게 달라진다. 본 기고문에서는 폐플라스틱의 촉매 열분해를 통해 가솔린, 디젤유 및 항공유와 같은 수송용 연료, 발전용 연료 혹은 방향족 화학 물질을 생산하는 기술들의 최신 연구 동향을 다루고 향후 전망에 대해 기술하고자 한다. 아울러 최근 몇 년간 많은 연구가 있었던 바이오매스와 폐플라스틱의 혼합열분해를 통한 하이브리드 촉매 공동 열분해 기술에 대해서도 다루고자 한다.

키워드

참고문헌

  1. A. Chamas, H. Moon, J. Zheng, Y. Qiu, T. Tabassum, J. H. Jang, M. Abu-Omar, S. L. Scott, and S. Suh, Degradation rates of plastics in the environment, ACS Sustain. Chem. Eng., 8, 3494-3511 (2020). https://doi.org/10.1021/acssuschemeng.9b06635
  2. OECD, Improving plastics management: Trends, policy responses, and the role of international co-operation and trade, Environ. Policy, 20 (2018).
  3. S. Abalansa, B. El Mahrad, G. K. Vondolia, J. Icely, and A. Newton, The marine plastic litter issue: A social-economic analysis, Sustainability, 12, 1-27 (2020). https://doi.org/10.3390/su12010001
  4. M. Grigore, Methods of recycling, properties and applications of recycled thermoplastic polymers, Recycling, 2, 1-11 (2017). https://doi.org/10.3390/recycling2040024
  5. PWMI, An introduction to plastic recycling, Plastic Waste Management Institute, 1-33 (2019).
  6. D. Czajczynska, T. Nannou, L. Anguilano, R. Krzyzynska, H. Ghazal, N. Spencer, and H. Jouhara, Potentials of pyrolysis processes in the waste management sector, Energy Procedia, 123, 387-394 (2017). https://doi.org/10.1016/j.egypro.2017.07.275
  7. M. Z. Siddiqui, Y.-K. Park, Y. Kang, A. Watanabe, S. Kim, and Y.-M. Kim, Effective use of aluminum-plastic laminate as a feedstock for catalytic pyrolysis over micro and mesoporous catalysts, J. Clean. Prod., 229, 1093-1101 (2019). https://doi.org/10.1016/j.jclepro.2019.04.404
  8. L. O. Mark, M. C. Cendejas, and I. Hermans, The use of heterogeneous catalysis in the chemical valorization of plastic waste, ChemSusChem, 13, 5808-5836 (2020). https://doi.org/10.1002/cssc.202001905
  9. M. D. Argyle and C. H. Bartholomew, Heterogeneous catalyst deactivation and regeneration: A review, Catalysts, 5, 145-269 (2015). https://doi.org/10.3390/catal5010145
  10. H. W. Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park, and Y.-K. Park, Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons, Bioresour. Technol., 310, 123473 (2020). https://doi.org/10.1016/j.biortech.2020.123473
  11. X. Zhang, H. Lei, S. Chen, and J. Wu, Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review, Green Chem., 18, 4145-4169 (2016). https://doi.org/10.1039/c6gc00911e
  12. S. Ghatge, Y. Yang, J. H. Ahn, and H. G. Hur, Biodegradation of polyethylene: a brief review, Appl. Biol. Chem., 63, 27 (2020). https://doi.org/10.1186/s13765-020-00511-3
  13. Y. K. Park, M. Z. Siddiqui, Y. Kang, A. Watanabe, H. W Lee, S. J. Jeong, S. Kim, and Y. M. Kim, Increased aromatics formation by the use of high-density polyethylene on the catalytic pyrolysis of mandarin peel over HY and HZSM-5, Catalysts, 8, 656 (2018). https://doi.org/10.3390/catal8120656
  14. H. A. Maddah, Polypropylene as a promising plastic: A review, Am. J. Polym. Sci., 6, 1-11 (2016).
  15. H. W. Lee and Y. K. Park, Catalytic pyrolysis of polyethylene and polypropylene over desilicated beta and Al-MSU-F, Catalysts, 8, 501 (2018). https://doi.org/10.3390/catal8110501
  16. N. Chaukura, W. Gwenzi, T. Bunhu, D. T. Ruziwa, and I. Pumure, Potential uses and value-added products derived from waste polystyrene in developing countries: A review, Resources Conservation Recycling, 107, 157-165 (2016) https://doi.org/10.1016/j.resconrec.2015.10.031
  17. I. M. Maafa, Pyrolysis of polystyrene waste: A review, Polymers, 13, 225 (2021). https://doi.org/10.3390/polym13020225
  18. L. Ciacci, F. Passarini, and I. Vassura, The european PVC cycle: In-use stock and flows, Resources Conservation Recycling, 123, 108-116 (2017) https://doi.org/10.1016/j.resconrec.2016.08.008
  19. T. Bhaskar, R. Negoro, A Muto, and Y. Sakata, Prevention of chlorinated hydrocarbons formation during pyrolysis of PVC of PVDC mixed plastics, Green Chem., 8, 697-700 (2006). https://doi.org/10.1039/b603037h
  20. S. Ma, J. Lu, and J. Gao, Study of the low temperature pyrolysis of PVC, Energy & Fuels, 16, 338-342 (2002). https://doi.org/10.1021/ef0101053
  21. S. Lim and Y. M. Kim, Catalytic pyrolysis of waste polyethylene terephthalate over waste concrete, Appl. Chem. Eng., 30, 707-711 (2019). https://doi.org/10.14478/ace.2019.1084
  22. G. Manos, A. Garforth, and J. Dwyer, Catalytic degradation of high-density polyethylene on an ultrastable-Y zeolite. Nature of initial polymer reactions, pattern of formation of gas and liquid products, and temperature effects, Ind. Eng. Chem. Res., 39, 1203-1208 (2000). https://doi.org/10.1021/ie990513i
  23. R. Bagri and P. T. Williams, Catalytic pyrolysis of polyethylene, J. Anal. Appl. Pyrolysis, 63, 29-41 (2002). https://doi.org/10.1016/S0165-2370(01)00139-5
  24. C. Kassargy, S. Awad, G. Burnens, K. Kahine, and M. Tazerout, Experimental study of catalytic pyrolysis of polyethylene and polypropylene over USY zeolite and separation to gasoline and diesel-like fuels, J. Anal. Appl. Pyrolysis, 127, 31-37 (2017). https://doi.org/10.1016/j.jaap.2017.09.005
  25. R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, and A. S. Nizami, Catalytic pyrolysis of plastic waste: A review, Process Saf. Environ., 102, 822-838 (2016). https://doi.org/10.1016/j.psep.2016.06.022
  26. H. Jia, H. Ben, Y. Luo, and R. Wang, Catalytic fast pyrolysis of poly (ethylene terephthalate) (PET) with zeolite and nickel chloride, Polymers, 12, 705 (2020). https://doi.org/10.3390/polym12030705
  27. H. W. Lee and Y.-K. Park, Catalytic pyrolysis of polyethylene and polypropylene over desilicated beta and Al-MSU-F, Catalysts, 8, 501 (2018). https://doi.org/10.3390/catal8110501
  28. K. Akubo, M. A. Nahil, and P. T. Williams, Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts, J. Energy Inst., 92, 195-202 (2019). https://doi.org/10.1016/j.joei.2017.10.009
  29. Y. Zhang, D. Duan, H. Lei, E. Villota, and R. Ruan, Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons, Appl. Energy, 251, 113337 (2019). https://doi.org/10.1016/j.apenergy.2019.113337
  30. E. Huo, H. Lei, C. Liu, Y. Zhang, L. Xin, Y. Zhao, M. Qian, Q. Zhang, X. Lin, C. Wang, W. Mateo, E.M. Villota, and R. Ruan, Jet fuel and hydrogen produced from waste plastics catalytic pyrolysis with activated carbon and MgO, Sci. Total Environ., 727, 138411 (2020). https://doi.org/10.1016/j.scitotenv.2020.138411
  31. H. Zhang, Y.-T. Cheng, T. P. Vispute, R. Xiao, and G. W. Huber, Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: The hydrogen to carbon effective ratio, Energy Environ. Sci., 4, 2297-2307 (2011). https://doi.org/10.1039/c1ee01230d
  32. C. Dorado, C. A. Mullen, and A. A. Boateng, HZSM-5 catalyzed co-pyrolysis of biomass and plastics, ACS Sustainable Chem. Eng., 2, 301-311 (2014). https://doi.org/10.1021/sc400354g
  33. X. Zhang, H. Lei, S. Chen, and J. Wu, Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review, Green Chem., 18, 4145-4169 (2016). https://doi.org/10.1039/c6gc00911e
  34. M. H. M. Ahmed, N. Batalha, H. M. D. Mahmudul, G. Perkins, and M. Konarova, A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism, Bioresour. Technol., 310, 123457 (2020). https://doi.org/10.1016/j.biortech.2020.123457
  35. B.-S. Kim, Y.-M. Kim, H. W. Lee, J. Jae, D. H. Kim, S. C. Jung, C. Watanabe, and Y. K. Park, Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY, ACS Sustainable Chem. Eng., 4, 1354-1363 (2016). https://doi.org/10.1021/acssuschemeng.5b01381
  36. Y.-M. Kim, J. Jae, B.-S. Kim, Y. Hong, S.-C. Jung, and Y.-K. Park, Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts, Energy Convers. Manag., 149, 966-973 (2017). https://doi.org/10.1016/j.enconman.2017.04.033
  37. P. S. Rezaei, H. Oh, Y. Hong, Y.-M. Kim, J. Jae, S.-C. Jung, J.-K. Jeon, and Y.-K. Park, In-situ catalytic co-pyrolysis of yellow poplar and high-density polyethylene over mesoporous catalysts, Energy Convers. Manag., 151, 116-122 (2017). https://doi.org/10.1016/j.enconman.2017.08.073
  38. A. Veses, O. Sanahuja-Parejo, M. V. Navarro, J. M. Lopez, R. Murillo, M. S. Callen, and T. Garcia, From laboratory scale to pilot plant: Evaluation of the catalytic co-pyrolysis of grape seeds and polystyrene wastes with CaO, Catal. Today, In press, https://doi.org/10.1016/j.cattod.2020.04.054.
  39. Y.-K. Park, J. Jung, S. Ryu, H. W. Lee, M. Z. Siddiqui, J. Jae, A. Watanabe, and Y.-M. Kim, Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two stage calcium oxide-ZSM-5, Appl. Energy, 250, 1706-1718 (2019). https://doi.org/10.1016/j.apenergy.2019.05.088
  40. Y.-M. Kim, J. Jeong, S. Ryu, H. W. Lee, J. S. Jung, M. Z. Siddiqui, S.-C. Jung, J.-K. Jeon, J. Jae, and Y.-K. Park, Catalytic pyrolysis of wood polymer composites over hierarchical mesoporous zeolites, Energy Convers. Manag., 195, 727-737 (2019). https://doi.org/10.1016/j.enconman.2019.05.034
  41. M. Z. Siddiqui, T. U. Han, Y.-K. Park, Y.-M. Kim, and S. Kim, Catalytic pyrolysis of tetra pak over acidic catalysts, Catalysts, 10, 602 (2020) https://doi.org/10.3390/catal10060602
  42. Y.-M. Kim, T. U. Han, S. Kim, J. Jae, J.-K. Jeon, S.-C. Jung, and Y.-K. Park, Catalytic co-pyrolysis of epoxy-printed circuit board and plastics over HZSM-5 and HY, J. Clean. Prod., 168, 366-374 (2017). https://doi.org/10.1016/j.jclepro.2017.08.224