참고문헌
- A. Chamas, H. Moon, J. Zheng, Y. Qiu, T. Tabassum, J. H. Jang, M. Abu-Omar, S. L. Scott, and S. Suh, Degradation rates of plastics in the environment, ACS Sustain. Chem. Eng., 8, 3494-3511 (2020). https://doi.org/10.1021/acssuschemeng.9b06635
- OECD, Improving plastics management: Trends, policy responses, and the role of international co-operation and trade, Environ. Policy, 20 (2018).
- S. Abalansa, B. El Mahrad, G. K. Vondolia, J. Icely, and A. Newton, The marine plastic litter issue: A social-economic analysis, Sustainability, 12, 1-27 (2020). https://doi.org/10.3390/su12010001
- M. Grigore, Methods of recycling, properties and applications of recycled thermoplastic polymers, Recycling, 2, 1-11 (2017). https://doi.org/10.3390/recycling2040024
- PWMI, An introduction to plastic recycling, Plastic Waste Management Institute, 1-33 (2019).
- D. Czajczynska, T. Nannou, L. Anguilano, R. Krzyzynska, H. Ghazal, N. Spencer, and H. Jouhara, Potentials of pyrolysis processes in the waste management sector, Energy Procedia, 123, 387-394 (2017). https://doi.org/10.1016/j.egypro.2017.07.275
- M. Z. Siddiqui, Y.-K. Park, Y. Kang, A. Watanabe, S. Kim, and Y.-M. Kim, Effective use of aluminum-plastic laminate as a feedstock for catalytic pyrolysis over micro and mesoporous catalysts, J. Clean. Prod., 229, 1093-1101 (2019). https://doi.org/10.1016/j.jclepro.2019.04.404
- L. O. Mark, M. C. Cendejas, and I. Hermans, The use of heterogeneous catalysis in the chemical valorization of plastic waste, ChemSusChem, 13, 5808-5836 (2020). https://doi.org/10.1002/cssc.202001905
- M. D. Argyle and C. H. Bartholomew, Heterogeneous catalyst deactivation and regeneration: A review, Catalysts, 5, 145-269 (2015). https://doi.org/10.3390/catal5010145
- H. W. Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park, and Y.-K. Park, Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons, Bioresour. Technol., 310, 123473 (2020). https://doi.org/10.1016/j.biortech.2020.123473
- X. Zhang, H. Lei, S. Chen, and J. Wu, Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review, Green Chem., 18, 4145-4169 (2016). https://doi.org/10.1039/c6gc00911e
- S. Ghatge, Y. Yang, J. H. Ahn, and H. G. Hur, Biodegradation of polyethylene: a brief review, Appl. Biol. Chem., 63, 27 (2020). https://doi.org/10.1186/s13765-020-00511-3
- Y. K. Park, M. Z. Siddiqui, Y. Kang, A. Watanabe, H. W Lee, S. J. Jeong, S. Kim, and Y. M. Kim, Increased aromatics formation by the use of high-density polyethylene on the catalytic pyrolysis of mandarin peel over HY and HZSM-5, Catalysts, 8, 656 (2018). https://doi.org/10.3390/catal8120656
- H. A. Maddah, Polypropylene as a promising plastic: A review, Am. J. Polym. Sci., 6, 1-11 (2016).
- H. W. Lee and Y. K. Park, Catalytic pyrolysis of polyethylene and polypropylene over desilicated beta and Al-MSU-F, Catalysts, 8, 501 (2018). https://doi.org/10.3390/catal8110501
- N. Chaukura, W. Gwenzi, T. Bunhu, D. T. Ruziwa, and I. Pumure, Potential uses and value-added products derived from waste polystyrene in developing countries: A review, Resources Conservation Recycling, 107, 157-165 (2016) https://doi.org/10.1016/j.resconrec.2015.10.031
- I. M. Maafa, Pyrolysis of polystyrene waste: A review, Polymers, 13, 225 (2021). https://doi.org/10.3390/polym13020225
- L. Ciacci, F. Passarini, and I. Vassura, The european PVC cycle: In-use stock and flows, Resources Conservation Recycling, 123, 108-116 (2017) https://doi.org/10.1016/j.resconrec.2016.08.008
- T. Bhaskar, R. Negoro, A Muto, and Y. Sakata, Prevention of chlorinated hydrocarbons formation during pyrolysis of PVC of PVDC mixed plastics, Green Chem., 8, 697-700 (2006). https://doi.org/10.1039/b603037h
- S. Ma, J. Lu, and J. Gao, Study of the low temperature pyrolysis of PVC, Energy & Fuels, 16, 338-342 (2002). https://doi.org/10.1021/ef0101053
- S. Lim and Y. M. Kim, Catalytic pyrolysis of waste polyethylene terephthalate over waste concrete, Appl. Chem. Eng., 30, 707-711 (2019). https://doi.org/10.14478/ace.2019.1084
- G. Manos, A. Garforth, and J. Dwyer, Catalytic degradation of high-density polyethylene on an ultrastable-Y zeolite. Nature of initial polymer reactions, pattern of formation of gas and liquid products, and temperature effects, Ind. Eng. Chem. Res., 39, 1203-1208 (2000). https://doi.org/10.1021/ie990513i
- R. Bagri and P. T. Williams, Catalytic pyrolysis of polyethylene, J. Anal. Appl. Pyrolysis, 63, 29-41 (2002). https://doi.org/10.1016/S0165-2370(01)00139-5
- C. Kassargy, S. Awad, G. Burnens, K. Kahine, and M. Tazerout, Experimental study of catalytic pyrolysis of polyethylene and polypropylene over USY zeolite and separation to gasoline and diesel-like fuels, J. Anal. Appl. Pyrolysis, 127, 31-37 (2017). https://doi.org/10.1016/j.jaap.2017.09.005
- R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, and A. S. Nizami, Catalytic pyrolysis of plastic waste: A review, Process Saf. Environ., 102, 822-838 (2016). https://doi.org/10.1016/j.psep.2016.06.022
- H. Jia, H. Ben, Y. Luo, and R. Wang, Catalytic fast pyrolysis of poly (ethylene terephthalate) (PET) with zeolite and nickel chloride, Polymers, 12, 705 (2020). https://doi.org/10.3390/polym12030705
- H. W. Lee and Y.-K. Park, Catalytic pyrolysis of polyethylene and polypropylene over desilicated beta and Al-MSU-F, Catalysts, 8, 501 (2018). https://doi.org/10.3390/catal8110501
- K. Akubo, M. A. Nahil, and P. T. Williams, Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts, J. Energy Inst., 92, 195-202 (2019). https://doi.org/10.1016/j.joei.2017.10.009
- Y. Zhang, D. Duan, H. Lei, E. Villota, and R. Ruan, Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons, Appl. Energy, 251, 113337 (2019). https://doi.org/10.1016/j.apenergy.2019.113337
- E. Huo, H. Lei, C. Liu, Y. Zhang, L. Xin, Y. Zhao, M. Qian, Q. Zhang, X. Lin, C. Wang, W. Mateo, E.M. Villota, and R. Ruan, Jet fuel and hydrogen produced from waste plastics catalytic pyrolysis with activated carbon and MgO, Sci. Total Environ., 727, 138411 (2020). https://doi.org/10.1016/j.scitotenv.2020.138411
- H. Zhang, Y.-T. Cheng, T. P. Vispute, R. Xiao, and G. W. Huber, Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: The hydrogen to carbon effective ratio, Energy Environ. Sci., 4, 2297-2307 (2011). https://doi.org/10.1039/c1ee01230d
- C. Dorado, C. A. Mullen, and A. A. Boateng, HZSM-5 catalyzed co-pyrolysis of biomass and plastics, ACS Sustainable Chem. Eng., 2, 301-311 (2014). https://doi.org/10.1021/sc400354g
- X. Zhang, H. Lei, S. Chen, and J. Wu, Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review, Green Chem., 18, 4145-4169 (2016). https://doi.org/10.1039/c6gc00911e
- M. H. M. Ahmed, N. Batalha, H. M. D. Mahmudul, G. Perkins, and M. Konarova, A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism, Bioresour. Technol., 310, 123457 (2020). https://doi.org/10.1016/j.biortech.2020.123457
- B.-S. Kim, Y.-M. Kim, H. W. Lee, J. Jae, D. H. Kim, S. C. Jung, C. Watanabe, and Y. K. Park, Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY, ACS Sustainable Chem. Eng., 4, 1354-1363 (2016). https://doi.org/10.1021/acssuschemeng.5b01381
- Y.-M. Kim, J. Jae, B.-S. Kim, Y. Hong, S.-C. Jung, and Y.-K. Park, Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts, Energy Convers. Manag., 149, 966-973 (2017). https://doi.org/10.1016/j.enconman.2017.04.033
- P. S. Rezaei, H. Oh, Y. Hong, Y.-M. Kim, J. Jae, S.-C. Jung, J.-K. Jeon, and Y.-K. Park, In-situ catalytic co-pyrolysis of yellow poplar and high-density polyethylene over mesoporous catalysts, Energy Convers. Manag., 151, 116-122 (2017). https://doi.org/10.1016/j.enconman.2017.08.073
- A. Veses, O. Sanahuja-Parejo, M. V. Navarro, J. M. Lopez, R. Murillo, M. S. Callen, and T. Garcia, From laboratory scale to pilot plant: Evaluation of the catalytic co-pyrolysis of grape seeds and polystyrene wastes with CaO, Catal. Today, In press, https://doi.org/10.1016/j.cattod.2020.04.054.
- Y.-K. Park, J. Jung, S. Ryu, H. W. Lee, M. Z. Siddiqui, J. Jae, A. Watanabe, and Y.-M. Kim, Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two stage calcium oxide-ZSM-5, Appl. Energy, 250, 1706-1718 (2019). https://doi.org/10.1016/j.apenergy.2019.05.088
- Y.-M. Kim, J. Jeong, S. Ryu, H. W. Lee, J. S. Jung, M. Z. Siddiqui, S.-C. Jung, J.-K. Jeon, J. Jae, and Y.-K. Park, Catalytic pyrolysis of wood polymer composites over hierarchical mesoporous zeolites, Energy Convers. Manag., 195, 727-737 (2019). https://doi.org/10.1016/j.enconman.2019.05.034
- M. Z. Siddiqui, T. U. Han, Y.-K. Park, Y.-M. Kim, and S. Kim, Catalytic pyrolysis of tetra pak over acidic catalysts, Catalysts, 10, 602 (2020) https://doi.org/10.3390/catal10060602
- Y.-M. Kim, T. U. Han, S. Kim, J. Jae, J.-K. Jeon, S.-C. Jung, and Y.-K. Park, Catalytic co-pyrolysis of epoxy-printed circuit board and plastics over HZSM-5 and HY, J. Clean. Prod., 168, 366-374 (2017). https://doi.org/10.1016/j.jclepro.2017.08.224