Recent Development of Selective Cell Penetrating Peptides

선택적 세포 투과 펩타이드의 최근 개발 동향

  • Lee, Yan (Department of Chemistry, College of Natural Sciences, Seoul National University)
  • 이연 (서울대학교 화학부)
  • Published : 2021.12.31

Abstract

세포 투과성 펩타이드(cell penetrating peptide; CPP)는 강력한 세포막 투과성을 보유하고 있어 난투과성 중거대분자 약물의 세포 내 전달체 개발에 있어 중요한 요소 기술로 부각되고 있다. 하지만 대부분의 세포 투과성 펩타이드는 타겟 세포에 대한 선택성 없이 투과하므로, 전신 투여시 심각한 부작용이 발생할 수 있다. 이 글에서는 선택적 세포 투과성 펩타이드를 개발하는 최근 연구 전략 중, 타겟 세포 표면에 존재하는 수용체에 결합하는 리간드를 이용한 전략과, 타겟 세포 주변의 물리, 화학, 생물학적 신호 변화를 이용하는 전략에 대해 소개한다. 특히, 최근 논문에 발표된, 어피버디(affibody)와 세포 투과성 펩타이드 결합체를 이용하여 HER2 수용체를 지닌 유방암 세포에 선택적 투과성을 부여하는 방법과, 암세포 주변의 작은 pH 변화를 감지하여 양전하성을 조절함으로써 수용체가 없는 유방암 세포에도 선택적으로 투과성을 보이는 방법에 대해 자세하게 소개한다.

Keywords

References

  1. https://www.pharmamanufacturing.com/articles/2020/pharmas-biggest-blockbusters/
  2. T. Wei, Q. Cheng, Y.-L. Min, E. N. Olson, and D. J. Siegwart, Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing, Nat. Commun., 11, 3232 (2020). https://doi.org/10.1038/s41467-020-17029-3
  3. A. D. Frankel and C. O. Pabo, Cellular uptake of the tat protein from human immunodeficiency virus, Cell, 55, 1189-1193 (1988). https://doi.org/10.1016/0092-8674(88)90263-2
  4. G. C. Kim, D. H. Cheon, and Y. Lee, Challenge to overcome current limitations of cell-penetrating peptides, BBA - Protein. Proteom., 1869, 140604 (2021). https://doi.org/10.1016/j.bbapap.2021.140604
  5. S. -E. Chong, D. Lee, J. H. Oh, S. Kang, S. Choi, S. H. Nam, J. Yu, H. Koo, and Y. Lee, A dimeric α-helical cell penetrating peptide mounted with HER2-selective affibody, Biomater. Sci., 2021, 9, 7826-7831 (2021).
  6. S. H. Nam, J. Jang, D. H. Cheon, S.-E. Chong, J. H. Ahn, S. Hyun, J. Yu, and Y. Lee, pH-activatable cell penetrating peptide dimers for potent delivery of anticancer drug to triple-negative breast cancer, J. Control. Release, 330, 898-906 (2021). https://doi.org/10.1016/j.jconrel.2020.10.063
  7. R. Pasqualini, E. Koivunen, E. Ruoslahti, A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins, J. Cell Biol., 130, 1189-1196 (1995). https://doi.org/10.1083/jcb.130.5.1189
  8. Y. Li, X. Zheng, M. Gong, J. Zhang, Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma, Oncotarget, 7, 79401-79407 (2016). https://doi.org/10.18632/oncotarget.12708
  9. M. Sauter, M. Strieker, C. Kleist, A. Wischnjow, V. Daniel, A. Altmann, U. Haberkorn, W. Mier, Improving antibody-based therapies by chemical engineering of antibodies with multimeric cell-penetrating peptides for elevated intracellular delivery, J. Control. Release, 322, 200-208 (2020). https://doi.org/10.1016/j.jconrel.2020.03.005
  10. J. Lofblom, J. Feldwisch, V. Tolmachev, J. Carlsson, S. Stahl, and F. Y. Frejd, Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications, FEBS Lett., 584, 2670-2680 (2010). https://doi.org/10.1016/j.febslet.2010.04.014
  11. C. Eigenbrot, M. Ultsch, A. Dubnovitsky, L. Abrahmsen, and T. Hard, Structural basis for high-affinity HER2 receptor binding by an engineered protein, Proc. Natl. Acad. Sci. U. S. A., 107, 15039-15044 (2010). https://doi.org/10.1073/pnas.1005025107
  12. S. Jang, S. Hyun, S. Kim, S. Lee, I.-S. Lee, M. Baba, Y. Lee, and J. Yu, Cell penetrating, dimeric α-helical peptides: nanomolar inhibitors of HIV-1 transcription, Angew. Chem. Int. Ed., 53, 10086-10089 (2014). https://doi.org/10.1002/anie.201404684
  13. J. H. Oh, S. Nam, S. Chong, S. Hyun, S. Choi, H. Gye, S. Jang, J. Jang, S. W. Hwang, J. Yu, and Y. Lee, Multimeric amphipathic α-helical sequences for rapid and efficient intracellular protein transport at nanomolar concentrations, Adv. Sci., 5, 1800240 (2018). https://doi.org/10.1002/advs.201800240
  14. Y. Lin, M. M. Mazo, S. C. Skaalure, M. R. Thomas, S.R. Schultz, and M.M. Stevens, Activatable cell-biomaterial interfacing with photo-caged peptides, Chem. Sci., 10, 1158-1167 (2019). https://doi.org/10.1039/C8SC04725A
  15. X. X. Li, J. Chen, J. M. Shen, R. Zhuang, S. Q. Zhang, Z. Y. Zhu, and J. B. Ma, pH-Sensitive nanoparticles as smart carriers for selective intracellular drug delivery to tumor, Int. J. Pharm., 545, 274-285 (2018). https://doi.org/10.1016/j.ijpharm.2018.05.012
  16. S. Y. Li, H. Cheng, W. X. Qiu, L. H. Liu, S. Chen, Y. Hu, B. R. Xie, B. Li, and X. Z. Zhang, Protease-activable cell-penetrating peptide-protoporphyrin conjugate for targeted photodynamic therapy in vivo, ACS Appl. Mater. Interfaces, 7, 28319-28329 (2015). https://doi.org/10.1021/acsami.5b08637
  17. Y. Zhao, W. Ren, T. Zhong, S. Zhang, D. Huang, Y. Guo, X. Yao, C. Wang, W.-Q. Zhang, and X. Zhang, Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity, J. Control. Release, 222, 56-66 (2016). https://doi.org/10.1016/j.jconrel.2015.12.006
  18. A. Komin, L. Russell, K. A. Hristova, and P. Searson, Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: mechanisms and challenges, Adv. Drug Del. Rev., 110, 52-64 (2017). https://doi.org/10.1016/j.addr.2016.06.002