Acknowledgement
이 논문은 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원(20203040010320)과 충남대학교 학술연구비의 지원을 받아 수행되었음.
References
- A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050-6051 (2009). https://doi.org/10.1021/ja809598r
- H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591 (2012). https://doi.org/10.1038/srep00591
- M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643-647 (2012). https://doi.org/10.1126/science.1228604
- J. Lim, M. T. Horantner, N. Sakai, J. M. Ball, S. Mahesh, N. K. Noel, Y. H. Lin, J. B. Patel, D. P. McMeekin, M. B. Johnston, B. Wenger, and H. J. Snaith, Elucidating the long-range charge carrier mobility in metal halide perovskite thin films, Energy Environ. Sci., 12, 169-176 (2019). https://doi.org/10.1039/C8EE03395A
- X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, Lead iodide perovskite light-emitting field-effect transistor, Nat. Commun., 6, 7383 (2015). https://doi.org/10.1038/ncomms8383
- Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Bright light-emitting diodes based on organometal halide perovskite, Nat. Nanotechnol., 9, 687-692 (2014). https://doi.org/10.1038/nnano.2014.149
- R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, High-Gain and Low-Driving-Voltage Photodetectors Based on Organolead Triiodide Perovskites, Adv. Mater., 27, 1912-1918 (2015). https://doi.org/10.1002/adma.201405116
- H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat. Mater., 14, 636-642 (2015). https://doi.org/10.1038/nmat4271
- G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Low-temperature solution-processed wavelength-tunable perovskites for lasing, Nat. Mater., 13, 476-480 (2014). https://doi.org/10.1038/nmat3911
- D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, 351, 151-155 (2016). https://doi.org/10.1126/science.aad5845
- A. N. Jumabekov, E. Della Gaspera, Z. Q. Xu, A. S. R. Chesman, J. Van Embden, S. A. Bonke, Q. Bao, D. Vak, and U. Bach, Back-contacted hybrid organic-inorganic perovskite solar cells, J. Mater. Chem. C, 4, 3125-3130 (2016). https://doi.org/10.1039/C6TC00681G
- S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341-344 (2013). https://doi.org/10.1126/science.1243982
- D. W. DeQuilettes, S. Jariwala, S. Burke, M. E. Ziffer, J. T. W. Wang, H. J. Snaith, and D. S. Ginger, Tracking Photoexcited Carriers in Hybrid Perovskite Semiconductors: Trap-Dominated Spatial Heterogeneity and Diffusion, ACS Nano, 11, 11488-11496 (2017). https://doi.org/10.1021/acsnano.7b06242
- G. W. P. Adhyaksa, E. Johlin, and E. C. Garnett, Nanoscale Back Contact Perovskite Solar Cell Design for Improved Tandem Efficiency, Nano Lett., 17, 5206-5212 (2017). https://doi.org/10.1021/acs.nanolett.7b01092
- J. M. Richter, F. Branchi, F. Valduga De Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy, Nat. Commun., 8, 376 (2017). https://doi.org/10.1038/s41467-017-00546-z
- R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films, Adv. Funct. Mater., 25, 6218-6227 (2015). https://doi.org/10.1002/adfm.201502340
- T. Leijtens, S. D. Stranks, G. E. Eperon, R. Lindblad, E. M. J. Johansson, I. J. McPherson, H. Rensmo, J. M. Ball, M. M. Lee, and H. J. Snaith, Electronic properties of meso-superstructured and planar organometal halide perovskite films: Charge trapping, photodoping, and carrier mobility, ACS Nano, 8, 7147-7155 (2014). https://doi.org/10.1021/nn502115k
- K. C. Wang, J. Y. Jeng, P. S. Shen, Y. C. Chang, E. W. G. Diau, C. H. Tsai, T. Y. Chao, H. C. Hsu, P. Y. Lin, P. Chen, T. F. Guo, and T. C. Wen, P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells, Sci. Rep., 4, 4756 (2014). https://doi.org/10.1038/srep04756
- D. S. Ginger, and N. C. Greenham, Photoinduced electron transfer from conjugated polymers to cdse nanocrystals, Phys. Rev. B - Condens. Matter Mater. Phys., 59, 10622-10629 (1999). https://doi.org/10.1103/PhysRevB.59.10622
- D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science, 347, 519-522 (2015). https://doi.org/10.1126/science.aaa2725
- M. B. Price, J. Butkus, T. C. Jellicoe, A. Sadhanala, A. Briane, J. E. Halpert, K. Broch, J. M. Hodgkiss, R. H. Friend, and F. Deschler, Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites, Nat. Commun., 6, 542 -550 (2015).
- H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, Improved understanding of the electronic and energetic landscapes of perovskite solar cells: High local charge carrier mobility, reduced recombination, and extremely shallow traps, J. Am. Chem. Soc., 136, 13818-13825 (2014). https://doi.org/10.1021/ja506936f
- J. G. Labram, N. R. Venkatesan, C. J. Takacs, H. A. Evans, E. E. Perry, F. Wudl, and M. L. Chabinyc, Charge transport in a two-dimensional hybrid metal halide thiocyanate compound, J. Mater. Chem. C, 5, 5930-5938 (2017). https://doi.org/10.1039/C7TC01161J
- P. Tiwana, P. Parkinson, M. B. Johnston, H. J. Snaith, and L. M. Herz, Ultrafast terahertz conductivity dynamics in mesoporous TiO2: Influence of dye sensitization and surface treatment in solid-state dye-sensitized solar cells, J. Phys. Chem. C, 114, 1365-1371 (2010). https://doi.org/10.1021/jp908760r
- C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx, Energy Environ. Sci., 7, 2269-2275 (2014). https://doi.org/10.1039/C4EE01358A
- M. Abulikemu, S. Ould-Chikh, X. Miao, E. Alarousu, B. Murali, G. O. Ngongang Ndjawa, J. Barbe, A. El Labban, A. Amassian, and S. Del Gobbo, Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9, J. Mater. Chem. A, 4, 12504-12515 (2016). https://doi.org/10.1039/C6TA04657F
- E. A. Duijnstee, J. M. Ball, V. M. Le Corre, L. J. A. Koster, H. J. Snaith, and J. Lim, Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskites, ACS Energy Lett., 5, 376-384 (2020). https://doi.org/10.1021/acsenergylett.9b02720
- T. Leijtens, E. T. Hoke, G. Grancini, D. J. Slotcavage, G. E. Eperon, J. M. Ball, M. De Bastiani, A. R. Bowring, N. Martino, K. Wojciechowski, M. D. McGehee, H. J. Snaith, and A. Petrozza, Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films, Adv. Energy Mater., 5, 1500962-1500972 (2015). https://doi.org/10.1002/aenm.201500962
- Y. Takahashi, H. Hasegawa, Y. Takahashi, and T. Inabe, Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor, J. Solid State Chem., 205, 39-43 (2013). https://doi.org/10.1016/j.jssc.2013.07.008
- B. R. Bennett, R. A. Soref, and J. A. Del Alamo, Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP, IEEE J. Quantum Electron., 26, 113-122 (1990). https://doi.org/10.1109/3.44924
- T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, and D. Cahen, Hybrid organic - Inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties, Nat. Rev. Mater., 1, 15007 (2016). https://doi.org/10.1038/natrevmats.2015.7
- O. Flender, J. R. Klein, T. Lenzer, and K. Oum, Ultrafast photoinduced dynamics of the organolead trihalide perovskite CH3NH3PbI3 on mesoporous TiO2 scaffolds in the 320-920 nm range, Phys. Chem. Chem. Phys., 17, 19238-19246 (2015). https://doi.org/10.1039/c5cp01973g
- M. E. Ziffer, J. C. Mohammed, and D. S. Ginger, Electroabsorption Spectroscopy Measurements of the Exciton Binding Energy, Electron-Hole Reduced Effective Mass, and Band Gap in the Perovskite CH3NH3PbI3, ACS Photonics, 3, 1060-1068 (2016). https://doi.org/10.1021/acsphotonics.6b00139
- K. Ohta, and H. Ishida, Comparison among several numerical integration methods for Kramers-Kronig transformation, Appl. Spectrosc., 42, 952-957 (1988). https://doi.org/10.1366/0003702884430380
- J. H. Robertson, Electrical transport in solids, with particular reference to organic semiconductors by K. C. Kao and W. Hwang , Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 38, 350-350 (1982).
- J. A. Rohr, T. Kirchartz, and J. Nelson, On the correct interpretation of the low voltage regime in intrinsic single-carrier devices, J. Phys. Condens. Matter, 29, 205901-205910 (2017). https://doi.org/10.1088/1361-648X/aa66cc
- J. V. D., Electronic processes in ionic crystals (Mott, N. F.; Gurney, R. W.), J. Chem. Educ., 42, A692 (1965). https://doi.org/10.1021/ed042pA692
- A. Poglitsch, and D. Weber, Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy, J. Chem. Phys., 87, 6373-6378 (1987). https://doi.org/10.1063/1.453467
- M. A. Lampert, Simplified theory of space-charge-limited currents in an insulator with traps, Phys. Rev., 103, 1648-1656 (1956). https://doi.org/10.1103/PhysRev.103.1648
- T. Van Woudenbergh, P. W. M. Blom, and J. N. Huiberts, Electro-optical properties of a polymer light-emitting diode with an injectionlimited hole contact, Appl. Phys. Lett., 82, 985-987 (2003). https://doi.org/10.1063/1.1543255
- H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, and W. Zhang, Anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett., 5, 1511-1515 (2014). https://doi.org/10.1021/jz500113x
- W. Tress, Metal Halide Perovskites as Mixed Electronic-Ionic Conductors: Challenges and Opportunities - From Hysteresis to Memristivity, J. Phys. Chem. Lett., 8, 3106-3114 (2017). https://doi.org/10.1021/acs.jpclett.7b00975
- Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, S. Tang, Q. Wang, X. Xiao, Y. Bai, Y. Deng, and J. Huang, Thin single crystal perovskite solar cells to harvest below-bandgap light absorption, Nat. Commun., 8, 1-7 (2017). https://doi.org/10.1038/s41467-016-0009-6
- Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D. M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. F. Liu, Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors, Nat. Commun., 9, 1-11 (2018). https://doi.org/10.1038/s41467-017-02088-w
- D. Ju, Y. Dang, Z. Zhu, H. Liu, C. C. Chueh, X. Li, L. Wang, X. Hu, A. K. Y. Jen, and X. Tao, Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH3NH3PbxSn1-xBr3 Single Crystals, Chem. Mater., 30, 1556-1565 (2018). https://doi.org/10.1021/acs.chemmater.7b04565