Elucidating the Optoelectronic Properties of Metal Halide Perovskites

페로브스카이트 소재의 광전자 특성 분석

  • Lee, Wonjong (Department of Energy Science and Technology, Chungnam National University) ;
  • Choi, Hajeong (Department of Energy Science and Technology, Chungnam National University) ;
  • Lim, Jongchul (Department of Energy Science and Technology, Chungnam National University)
  • 이원종 (충남대학교 에너지과학기술학과) ;
  • 최하정 (충남대학교 에너지과학기술학과) ;
  • 임종철 (충남대학교 에너지과학기술학과)
  • Published : 2021.10.31

Abstract

유무기 하이브리드 금속-할라이드계 페로브스카이트(organic-inorganic metal halide perovskite) 페로브스카이트 반도체 소재는 광전자 소자와 소재 연구에 새로운 연구 흐름을 만들고 있다. 태양전지 성능이 불과 과거 몇 년 사이의 짧은 연구 기간에도 불구하고, 광-전 변환 소자 중에서도 단일 소자와 적층 소자(tandem)에서 높은 광-전 변환 효율을 나타내기 때문이다. 이러한 급격한 연구 성과와 성장에도 불구하고, 페로브스카이트 소재의 다양한 광전자 특성의 평가와 결과에 대한 논의가 필요한 상황이다. 특히 내부 이온 이동이 광전자 원거리 이동 특성 평가와 해석에 영향을 주는 경우, 페로브스카이트 소재를 기반으로 한 다양한 광전자 소자의 성능 향상과 해석에 여전히 모호함을 준다. 달리 얘기하면, 이 소재의 기초 특성을 이해하고자 적용하는 다양한 기존 특성 평가 분석법의 활용과 해석에도 복잡한 영향을 미치고 있다고 할 수 있다. 이러한 페로브스카이트 소재 내에서 광전자 원거리 이동을 측정하는 새로운 방법을 소개하고자 한다. 첫 번째 방법으로, Quasi-steady 상태에서 광전도도를 전기적 특성으로 측정하고, 광조사 하에 투과 및 반사를 광학적으로 측정하여, 전도도와 광전자 밀도를 동시에 평가하는 방법으로, photo-induced transmission and reflection (PITR) 분광분석법이다. 이 분광분석법은 실제 소자의 구동조건을 구현한 상태에서 광전자의 원거리 이동에서 발생하는 광전자 밀도 변화를 반영한 광전자 이동도 특성 평가라는 장점을 가지고 있다. 두 번째 방법으로, 기존의 연속 전압 인가 방법 대신 펄스형 전압 인가 방식을 도입하는 방법으로, pulsed voltage space charge limited current (PV-SCLC) 분석법이다. 이는 펄스형 전압 인가 방법으로 이온의 이동을 최소화하여, 전류-전압 측정에서 히스테리시스가 없고 측정결과의 재현성과 신뢰도가 매우 높은 장점이 있다.

Keywords

Acknowledgement

이 논문은 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원(20203040010320)과 충남대학교 학술연구비의 지원을 받아 수행되었음.

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050-6051 (2009). https://doi.org/10.1021/ja809598r
  2. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591 (2012). https://doi.org/10.1038/srep00591
  3. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643-647 (2012). https://doi.org/10.1126/science.1228604
  4. J. Lim, M. T. Horantner, N. Sakai, J. M. Ball, S. Mahesh, N. K. Noel, Y. H. Lin, J. B. Patel, D. P. McMeekin, M. B. Johnston, B. Wenger, and H. J. Snaith, Elucidating the long-range charge carrier mobility in metal halide perovskite thin films, Energy Environ. Sci., 12, 169-176 (2019). https://doi.org/10.1039/C8EE03395A
  5. X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, Lead iodide perovskite light-emitting field-effect transistor, Nat. Commun., 6, 7383 (2015). https://doi.org/10.1038/ncomms8383
  6. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Bright light-emitting diodes based on organometal halide perovskite, Nat. Nanotechnol., 9, 687-692 (2014). https://doi.org/10.1038/nnano.2014.149
  7. R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, High-Gain and Low-Driving-Voltage Photodetectors Based on Organolead Triiodide Perovskites, Adv. Mater., 27, 1912-1918 (2015). https://doi.org/10.1002/adma.201405116
  8. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat. Mater., 14, 636-642 (2015). https://doi.org/10.1038/nmat4271
  9. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Low-temperature solution-processed wavelength-tunable perovskites for lasing, Nat. Mater., 13, 476-480 (2014). https://doi.org/10.1038/nmat3911
  10. D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, 351, 151-155 (2016). https://doi.org/10.1126/science.aad5845
  11. A. N. Jumabekov, E. Della Gaspera, Z. Q. Xu, A. S. R. Chesman, J. Van Embden, S. A. Bonke, Q. Bao, D. Vak, and U. Bach, Back-contacted hybrid organic-inorganic perovskite solar cells, J. Mater. Chem. C, 4, 3125-3130 (2016). https://doi.org/10.1039/C6TC00681G
  12. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341-344 (2013). https://doi.org/10.1126/science.1243982
  13. D. W. DeQuilettes, S. Jariwala, S. Burke, M. E. Ziffer, J. T. W. Wang, H. J. Snaith, and D. S. Ginger, Tracking Photoexcited Carriers in Hybrid Perovskite Semiconductors: Trap-Dominated Spatial Heterogeneity and Diffusion, ACS Nano, 11, 11488-11496 (2017). https://doi.org/10.1021/acsnano.7b06242
  14. G. W. P. Adhyaksa, E. Johlin, and E. C. Garnett, Nanoscale Back Contact Perovskite Solar Cell Design for Improved Tandem Efficiency, Nano Lett., 17, 5206-5212 (2017). https://doi.org/10.1021/acs.nanolett.7b01092
  15. J. M. Richter, F. Branchi, F. Valduga De Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy, Nat. Commun., 8, 376 (2017). https://doi.org/10.1038/s41467-017-00546-z
  16. R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films, Adv. Funct. Mater., 25, 6218-6227 (2015). https://doi.org/10.1002/adfm.201502340
  17. T. Leijtens, S. D. Stranks, G. E. Eperon, R. Lindblad, E. M. J. Johansson, I. J. McPherson, H. Rensmo, J. M. Ball, M. M. Lee, and H. J. Snaith, Electronic properties of meso-superstructured and planar organometal halide perovskite films: Charge trapping, photodoping, and carrier mobility, ACS Nano, 8, 7147-7155 (2014). https://doi.org/10.1021/nn502115k
  18. K. C. Wang, J. Y. Jeng, P. S. Shen, Y. C. Chang, E. W. G. Diau, C. H. Tsai, T. Y. Chao, H. C. Hsu, P. Y. Lin, P. Chen, T. F. Guo, and T. C. Wen, P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells, Sci. Rep., 4, 4756 (2014). https://doi.org/10.1038/srep04756
  19. D. S. Ginger, and N. C. Greenham, Photoinduced electron transfer from conjugated polymers to cdse nanocrystals, Phys. Rev. B - Condens. Matter Mater. Phys., 59, 10622-10629 (1999). https://doi.org/10.1103/PhysRevB.59.10622
  20. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science, 347, 519-522 (2015). https://doi.org/10.1126/science.aaa2725
  21. M. B. Price, J. Butkus, T. C. Jellicoe, A. Sadhanala, A. Briane, J. E. Halpert, K. Broch, J. M. Hodgkiss, R. H. Friend, and F. Deschler, Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites, Nat. Commun., 6, 542 -550 (2015).
  22. H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, Improved understanding of the electronic and energetic landscapes of perovskite solar cells: High local charge carrier mobility, reduced recombination, and extremely shallow traps, J. Am. Chem. Soc., 136, 13818-13825 (2014). https://doi.org/10.1021/ja506936f
  23. J. G. Labram, N. R. Venkatesan, C. J. Takacs, H. A. Evans, E. E. Perry, F. Wudl, and M. L. Chabinyc, Charge transport in a two-dimensional hybrid metal halide thiocyanate compound, J. Mater. Chem. C, 5, 5930-5938 (2017). https://doi.org/10.1039/C7TC01161J
  24. P. Tiwana, P. Parkinson, M. B. Johnston, H. J. Snaith, and L. M. Herz, Ultrafast terahertz conductivity dynamics in mesoporous TiO2: Influence of dye sensitization and surface treatment in solid-state dye-sensitized solar cells, J. Phys. Chem. C, 114, 1365-1371 (2010). https://doi.org/10.1021/jp908760r
  25. C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx, Energy Environ. Sci., 7, 2269-2275 (2014). https://doi.org/10.1039/C4EE01358A
  26. M. Abulikemu, S. Ould-Chikh, X. Miao, E. Alarousu, B. Murali, G. O. Ngongang Ndjawa, J. Barbe, A. El Labban, A. Amassian, and S. Del Gobbo, Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9, J. Mater. Chem. A, 4, 12504-12515 (2016). https://doi.org/10.1039/C6TA04657F
  27. E. A. Duijnstee, J. M. Ball, V. M. Le Corre, L. J. A. Koster, H. J. Snaith, and J. Lim, Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskites, ACS Energy Lett., 5, 376-384 (2020). https://doi.org/10.1021/acsenergylett.9b02720
  28. T. Leijtens, E. T. Hoke, G. Grancini, D. J. Slotcavage, G. E. Eperon, J. M. Ball, M. De Bastiani, A. R. Bowring, N. Martino, K. Wojciechowski, M. D. McGehee, H. J. Snaith, and A. Petrozza, Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films, Adv. Energy Mater., 5, 1500962-1500972 (2015). https://doi.org/10.1002/aenm.201500962
  29. Y. Takahashi, H. Hasegawa, Y. Takahashi, and T. Inabe, Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor, J. Solid State Chem., 205, 39-43 (2013). https://doi.org/10.1016/j.jssc.2013.07.008
  30. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP, IEEE J. Quantum Electron., 26, 113-122 (1990). https://doi.org/10.1109/3.44924
  31. T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, and D. Cahen, Hybrid organic - Inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties, Nat. Rev. Mater., 1, 15007 (2016). https://doi.org/10.1038/natrevmats.2015.7
  32. O. Flender, J. R. Klein, T. Lenzer, and K. Oum, Ultrafast photoinduced dynamics of the organolead trihalide perovskite CH3NH3PbI3 on mesoporous TiO2 scaffolds in the 320-920 nm range, Phys. Chem. Chem. Phys., 17, 19238-19246 (2015). https://doi.org/10.1039/c5cp01973g
  33. M. E. Ziffer, J. C. Mohammed, and D. S. Ginger, Electroabsorption Spectroscopy Measurements of the Exciton Binding Energy, Electron-Hole Reduced Effective Mass, and Band Gap in the Perovskite CH3NH3PbI3, ACS Photonics, 3, 1060-1068 (2016). https://doi.org/10.1021/acsphotonics.6b00139
  34. K. Ohta, and H. Ishida, Comparison among several numerical integration methods for Kramers-Kronig transformation, Appl. Spectrosc., 42, 952-957 (1988). https://doi.org/10.1366/0003702884430380
  35. J. H. Robertson, Electrical transport in solids, with particular reference to organic semiconductors by K. C. Kao and W. Hwang , Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 38, 350-350 (1982).
  36. J. A. Rohr, T. Kirchartz, and J. Nelson, On the correct interpretation of the low voltage regime in intrinsic single-carrier devices, J. Phys. Condens. Matter, 29, 205901-205910 (2017). https://doi.org/10.1088/1361-648X/aa66cc
  37. J. V. D., Electronic processes in ionic crystals (Mott, N. F.; Gurney, R. W.), J. Chem. Educ., 42, A692 (1965). https://doi.org/10.1021/ed042pA692
  38. A. Poglitsch, and D. Weber, Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy, J. Chem. Phys., 87, 6373-6378 (1987). https://doi.org/10.1063/1.453467
  39. M. A. Lampert, Simplified theory of space-charge-limited currents in an insulator with traps, Phys. Rev., 103, 1648-1656 (1956). https://doi.org/10.1103/PhysRev.103.1648
  40. T. Van Woudenbergh, P. W. M. Blom, and J. N. Huiberts, Electro-optical properties of a polymer light-emitting diode with an injectionlimited hole contact, Appl. Phys. Lett., 82, 985-987 (2003). https://doi.org/10.1063/1.1543255
  41. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, and W. Zhang, Anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett., 5, 1511-1515 (2014). https://doi.org/10.1021/jz500113x
  42. W. Tress, Metal Halide Perovskites as Mixed Electronic-Ionic Conductors: Challenges and Opportunities - From Hysteresis to Memristivity, J. Phys. Chem. Lett., 8, 3106-3114 (2017). https://doi.org/10.1021/acs.jpclett.7b00975
  43. Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, S. Tang, Q. Wang, X. Xiao, Y. Bai, Y. Deng, and J. Huang, Thin single crystal perovskite solar cells to harvest below-bandgap light absorption, Nat. Commun., 8, 1-7 (2017). https://doi.org/10.1038/s41467-016-0009-6
  44. Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D. M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, and S. F. Liu, Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors, Nat. Commun., 9, 1-11 (2018). https://doi.org/10.1038/s41467-017-02088-w
  45. D. Ju, Y. Dang, Z. Zhu, H. Liu, C. C. Chueh, X. Li, L. Wang, X. Hu, A. K. Y. Jen, and X. Tao, Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH3NH3PbxSn1-xBr3 Single Crystals, Chem. Mater., 30, 1556-1565 (2018). https://doi.org/10.1021/acs.chemmater.7b04565