유기금속 할라이드 페로브스카이트 기반 광전기화학 셀을 이용한 수소 생산 기술의 동향과 전망

Recent Research Trend in Organometal Halide Perovskite-Based Photoelectrodes for Efficient Solar Hydrogen Production

  • 최호중 (광주과학기술원 신소재공학부) ;
  • 서세훈 (광주과학기술원 신소재공학부) ;
  • 이상한 (광주과학기술원 신소재공학부)
  • Choi, Hojoong (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Seo, Sehun (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Sanghan (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
  • 발행 : 2021.02.28

초록

최근 전 세계적으로 이산화탄소를 포함한 대기 오염원의 배출을 줄이고 화석연료를 대체할 수 있는 차세대 청정에너지원으로 '수소'를 주목하고 있다. 하지만 현재까지 사회에 유통되는 대부분의 수소는 화석연료 개질을 기반으로 생산되기 때문에 2차 환경오염의 위험을 가지고 있다. 이에 이산화탄소 배출이 없이 태양에너지로부터 물을 분해해 수소를 생산하는 광전기화학 수소 생산 기술이 주목받고 있다. 단 광전기화학 물분해 수소생산을 실현하기 위해서는 수소를 충분히 생산시킬 수 있는 충분한 전류밀도, 과전압을 최소화하는 높은 개시전위, 및 그 생산비용을 최소화 할 수 있는 저렴한 공정 등을 동시에 만족시킬 수 있는 광전극 소재 개발이 필요하다. 최근 광소자용 소재로 각광을 받는 유기금속 할라이드 페로브스카이트 소재가 상기의 조건들을 상당히 만족할 것으로 기대되고 있어 광전기화학 물분해 셀로 적용되는 연구들이 수행되고 있다. 본 기고문에서는 유기금속 할라이드 페로브스카이트 소재기반 광전기화학 물분해 관련 최신 연구동향과 전망을 다루고자 한다.

키워드

참고문헌

  1. 한국에너지공단 신재생에너지센터, 2018 신재생에너지 백서, 산업통상자원부(2018).
  2. J. H. Kim, D. Hansora, P. Sharma, J.-W. Jang, and J. S. Lee, Toward practical solar hydrogen production - An artificial photosynthetic leaf-to-farm challenge, Chem. Soc. Rev., 48(7), 1908-1971 (2019). https://doi.org/10.1039/c8cs00699g
  3. S. Seo, S. Kim, H. Choi, J. Lee, H. Yoon, G. Piao, J. C. Park, Y. Jung, J. Song, and S. Y. Jeong, Direct in situ growth of centimeter-scale multi-heterojunction MoS2/WS2/WSe2 thin-film catalyst for photo-electrochemical hydrogen evolution, Adv. Sci., 6(13), 1900301 (2019). https://doi.org/10.1002/advs.201900301
  4. W.-H. Cheng, M. H. Richter, M. M. May, J. Ohlmann, D. Lackner, F. Dimroth, T. Hannappel, H. A. Atwater, and H.-J. Lewerenz, Monolithic photoelectrochemical device for direct water splitting with 19% efficiency, ACS Energy Lett., 3(8), 1795-1800 (2018). https://doi.org/10.1021/acsenergylett.8b00920
  5. J. Chen, C. Dong, H. Idriss, O. F. Mohammed, and O. M. Bakr, Metal halide perovskites for solar-to-chemical fuel conversion, Adv. Energy Mater., 10(13), 1902433 (2020). https://doi.org/10.1002/aenm.201902433
  6. V. D'innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun., 5(1), 1-6 (2014).
  7. C. Li, Q. Guo, H. Zhang, Y. Bai, F. Wang, L. Liu, T. Hayat, A. Alsaedi, and Z. a. Tan, Enhancing the crystallinity of HC(NH2)2PbI3 film by incorporating methylammonium halide intermediate for efficient and stable perovskite solar cells, Nano Energy, 40, 248-257 (2017). https://doi.org/10.1016/j.nanoen.2017.08.009
  8. E. Calabro, F. Matteocci, A. L. Palma, L. Vesce, B. Taheri, L. Carlini, I. Pis, S. Nappini, J. Dagar, and C. Battocchio, Low temperature, solution-processed perovskite solar cells and modules with an aperture area efficiency of 11%, Sol. Energy Mater. Sol. Cells, 185, 136-144 (2018). https://doi.org/10.1016/j.solmat.2018.05.001
  9. J. A. Christians, P. A. M. Herrera, and P. V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air, J. Am. Chem. Soc., 137(4), 1530-1538 (2015). https://doi.org/10.1021/ja511132a
  10. Y. Yuan and J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability, Acc. Chem. Res., 49(2), 286-293 (2016). https://doi.org/10.1021/acs.accounts.5b00420
  11. M. Crespo-Quesada, L. M. Pazos-Outon, J. Warnan, M. F. Kuehnel, R. H. Friend, and E. Reisner, Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water, Nat. Commun., 7(1), 1-7 (2016).
  12. I. S. Kim, M. J. Pellin, and A. B. Martinson, Acid-compatible halide perovskite photocathodes utilizing atomic layer deposited TiO2 for solar-driven hydrogen evolution, ACS Energy Lett., 4(1), 293-298 (2019). https://doi.org/10.1021/acsenergylett.8b01661
  13. S. Ahmad, A. Sadhanala, R. L. Hoye, V. Andrei, M. H. Modarres, B. Zhao, J. Ronge, R. Friend, and M. De Volder, Triple-cation-based perovskite photocathodes with AZO protective layer for hydrogen production applications, ACS Appl. Mater. Interfaces, 11(26), 23198-23206 (2019). https://doi.org/10.1021/acsami.9b04963
  14. H. Zhang, Z. Yang, W. Yu, H. Wang, W. Ma, X. Zong, and C. Li, A sandwich-like organolead halide perovskite photocathode for efficient and durable photoelectrochemical hydrogen evolution in water, Adv. Energy Mater., 8(22), 1800795 (2018). https://doi.org/10.1002/aenm.201800795
  15. C. Pornrungroj, V. Andrei, M. Rahaman, C. Uswachoke, H. J. Joyce, D. S. Wright, and E. Reisner, Bifunctional perovskite-BiVO4 tandem devices for uninterrupted solar and electrocatalytic water splitting cycles, Adv. Funct. Mater., 2008182 (2020).
  16. V. Andrei, R. L. Hoye, M. Crespo-Quesada, M. Bajada, S. Ahmad, M. De Volder, R. Friend, and E. Reisner, Scalable triple cation mixed halide perovskite-BiVO4 tandems for bias-free water splitting, Adv. Energy Mater., 8(25), 1801403 (2018). https://doi.org/10.1002/aenm.201801403
  17. L.-F. Gao, W.-J. Luo, Y.-F. Yao, and Z.-G. Zou, An all-inorganic lead halide perovskite-based photocathode for stable water reduction, Chem. Commun., 54(81), 11459-11462 (2018). https://doi.org/10.1039/c8cc06952b
  18. J. H. Kim, S. Seo, J. H. Lee, H. Choi, S. Kim, G. Piao, Y. R. Kim, B. Park, J. Lee, Y. Jung, H. Park, S. Lee, and K. Lee, Efficient and stable perovskite-based photocathode for photoelectrochemical hydrogen production, Adv. Funct. Mater., DOI:10.1002/adfm.202008277.
  19. P. Da, M. Cha, L. Sun, Y. Wu, Z.-S. Wang, and G. Zheng, High-performance perovskite photoanode enabled by Ni passivation and catalysis, Nano Lett., 15(5), 3452-3457 (2015). https://doi.org/10.1021/acs.nanolett.5b00788
  20. S. Nam, C. T. K. Mai, and I. Oh, Ultrastable photoelectrodes for solar water splitting based on organic metal halide perovskite fabricated by lift-off process, ACS Appl. Mater. Interfaces, 10(17), 14659-14664 (2018). https://doi.org/10.1021/acsami.8b00686
  21. R. Tao, Z. Sun, F. Li, W. Fang, and L. Xu, Achieving organic metal halide perovskite into a conventional photoelectrode: Outstanding stability in aqueous solution and high-efficient photoelectrochemical water splitting, ACS Appl. Energy Mater., 2(3), 1969-1976 (2019). https://doi.org/10.1021/acsaem.8b02072
  22. I. Poli, U. Hintermair, M. Regue, S. Kumar, E. V. Sackville, J. Baker, T. M. Watson, S. Eslava, and P. J. Cameron, Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water, Nat. Commun., 10(1), 1-10 (2019). https://doi.org/10.1038/s41467-018-07882-8
  23. W. Li, L. Yao, K. Li, X. Li, B. Yang, S. Xu, S. Shi, C. Yi, M. Chen, and Y. Feng, Enabling low-temperature deposition of high-efficiency CIGS solar cells with a modified three-stage co-evaporation process, ACS Appl. Energy Mater., 3(5), 4201-4207 (2020). https://doi.org/10.1021/acsaem.9b02025
  24. Z. Luo, B. Liu, H. Li, X. Chang, W. Zhu, T. Wang, and J. Gong, Multifunctional nickel film protected n-type silicon photoanode with high photovoltage for efficient and stable oxygen evolution reaction, Small Methods, 3(10), 1900212 (2019). https://doi.org/10.1002/smtd.201900212
  25. E. E. Moore, V. Andrei, S. n. Zacarias, I. A. Pereira, and E. Reisner, Integration of a hydrogenase in a lead halide perovskite photoelectrode for tandem solar water splitting, ACS Energy Lett., 5(1), 232-237 (2019).