DOI QR코드

DOI QR Code

Endoplasmic Reticulum Stress Induces CAP2 Expression Promoting Epithelial-Mesenchymal Transition in Liver Cancer Cells

  • Yoon, Sarah (Department of Physiology, Ajou University School of Medicine) ;
  • Shin, Boram (Department of Physiology, Ajou University School of Medicine) ;
  • Woo, Hyun Goo (Department of Physiology, Ajou University School of Medicine)
  • Received : 2021.02.03
  • Accepted : 2021.05.23
  • Published : 2021.08.31

Abstract

Cyclase-associated protein 2 (CAP2) has been addressed as a candidate biomarker in various cancer types. Previously, we have shown that CAP2 is expressed during multi-step hepatocarcinogenesis; however, its underlying mechanisms in liver cancer cells are not fully elucidated yet. Here, we demonstrated that endoplasmic reticulum (ER) stress induced CAP2 expression, and which promoted migration and invasion of liver cancer cells. We also found that the ER stress-induced CAP2 expression is mediated through activation of protein kinase C epsilon (PKCε) and the promotor binding of activating transcription factor 2 (ATF2). In addition, we further demonstrated that CAP2 expression promoted epithelial-mesenchymal transition (EMT) through activation of Rac1 and ERK. In conclusion, we suggest that ER stress induces CAP2 expression promoting EMT in liver cancer cells. Our results shed light on the novel functions of CAP2 in the metastatic process of liver cancer cells.

Keywords

Acknowledgement

This work was supported by grants from the National Research Foundation of Korea (NRF), funded by the Korean government (MSIP) (NRF-2017R1E1A1A01074733, NRF-2017M3A9B6061509, NRF-2017M3C9A6047620, NRF-2019R1A5A2026045, and NRF-2019R1I1A1A01057206).

References

  1. Ahmed, M.B., Islam, S.U., Sonn, J.K., and Lee, Y.S. (2020). PRP4 kinase domain loss nullifies drug resistance and epithelial-mesenchymal transition in human colorectal carcinoma cells. Mol. Cells 43, 662-670. https://doi.org/10.14348/molcells.2020.2263
  2. Bid, H.K., Roberts, R.D., Manchanda, P.K., and Houghton, P.J. (2013). RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol. Cancer Ther. 12, 1925-1934. https://doi.org/10.1158/1535-7163.MCT-13-0164
  3. Bright, M.D., Clarke, P.A., Workman, P., and Davies, F.E. (2018). Oncogenic RAC1 and NRAS drive resistance to endoplasmic reticulum stress through MEK/ERK signalling. Cell. Signal. 44, 127-137. https://doi.org/10.1016/j.cellsig.2018.01.004
  4. Cubillos-Ruiz, J.R., Bettigole, S.E., and Glimcher, L.H. (2017). Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168, 692-706. https://doi.org/10.1016/j.cell.2016.12.004
  5. De, P., Aske, J.C., and Dey, N. (2019). RAC1 takes the lead in solid tumors. Cells 8, 382. https://doi.org/10.3390/cells8050382
  6. Ebi, H., Costa, C., Faber, A.C., Nishtala, M., Kotani, H., Juric, D., Della Pelle, P., Song, Y., Yano, S., Mino-Kenudson, M., et al. (2013). PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proc. Natl. Acad. Sci. U. S. A. 110, 21124-21129. https://doi.org/10.1073/pnas.1314124110
  7. Effendi, K., Yamazaki, K., Mori, T., Masugi, Y., Makino, S., and Sakamoto, M. (2013). Involvement of hepatocellular carcinoma biomarker, cyclaseassociated protein 2 in zebrafish body development and cancer progression. Exp. Cell Res. 319, 35-44. https://doi.org/10.1016/j.yexcr.2012.09.013
  8. Farre, D., Roset, R., Huerta, M., Adsuara, J.E., Rosello, L., Alba, M.M., and Messeguer, X. (2003). Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 31, 3651-3653. https://doi.org/10.1093/nar/gkg605
  9. Fu, J., Li, M., Wu, D.C., Liu, L.L., Chen, S.L., and Yun, J.P. (2015). Increased expression of CAP2 indicates poor prognosis in hepatocellular carcinoma. Transl. Oncol. 8, 400-406. https://doi.org/10.1016/j.tranon.2015.08.003
  10. Jee, B.A., Choi, J.H., Rhee, H., Yoon, S., Kwon, S.M., Nahm, J.H., Yoo, J.E., Jeon, Y., Choi, G.H., Woo, H.G., et al. (2019). Dynamics of genomic, epigenomic, and transcriptomic aberrations during stepwise hepatocarcinogenesis. Cancer Res. 79, 5500-5512. https://doi.org/10.1158/0008-5472.CAN-19-0991
  11. Jiang, Q.H., Wang, A.X., and Chen, Y. (2014). Radixin enhances colon cancer cell invasion by increasing MMP-7 production via Rac1-ERK pathway. ScientificWorldJournal 2014, 340271.
  12. Kosmas, K., Eskandarnaz, A., Khorsandi, A.B., Kumar, A., Ranjan, R., Eming, S.A., Noegel, A.A., and Peche, V.S. (2015). CAP2 is a regulator of the actin cytoskeleton and its absence changes infiltration of inflammatory cells and contraction of wounds. Eur. J. Cell Biol. 94, 32-45. https://doi.org/10.1016/j.ejcb.2014.10.004
  13. Lau, E. and Ronai, Z.A. (2012). ATF2 - at the crossroad of nuclear and cytosolic functions. J. Cell Sci. 125, 2815-2824.
  14. Lin, C.H., Shih, C.H., Lin, Y.C., Yang, Y.L., and Chen, B.C. (2018). MEKK1, JNK, and SMAD3 mediate CXCL12-stimulated connective tissue growth factor expression in human lung fibroblasts. J. Biomed. Sci. 25, 19. https://doi.org/10.1186/s12929-018-0421-9
  15. Madden, E., Logue, S.E., Healy, S.J., Manie, S., and Samali, A. (2019). The role of the unfolded protein response in cancer progression: from oncogenesis to chemoresistance. Biol. Cell 111, 1-17. https://doi.org/10.1111/boc.201800050
  16. Meloche, S. and Pouyssegur, J. (2007). The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26, 3227-3239. https://doi.org/10.1038/sj.onc.1210414
  17. Murphy, L.O. and Blenis, J. (2006). MAPK signal specificity: the right place at the right time. Trends Biochem. Sci. 31, 268-275. https://doi.org/10.1016/j.tibs.2006.03.009
  18. Ojima, H., Masugi, Y., Tsujikawa, H., Emoto, K., Fujii-Nishimura, Y., Hatano, M., Kawaida, M., Itano, O., Kitagawa, Y., and Sakamoto, M. (2016). Early hepatocellular carcinoma with high-grade atypia in small vaguely nodular lesions. Cancer Sci. 107, 543-550. https://doi.org/10.1111/cas.12893
  19. Pang, Y., Zhao, Y., Wang, Y., Wang, X., Wang, R., Liu, N., Li, P., Ji, M., Ye, J., Sun, T., et al. (2020). TNFAIP8 promotes AML chemoresistance by activating ERK signaling pathway through interaction with Rac1. J. Exp. Clin. Cancer Res. 39, 158. https://doi.org/10.1186/s13046-020-01658-z
  20. Sakamoto, M. (2009). Early HCC: diagnosis and molecular markers. J. Gastroenterol. 44 Suppl 19, 108-111. https://doi.org/10.1007/s00535-008-2245-y
  21. Sakamoto, M., Mori, T., Masugi, Y., Effendi, K., Rie, I., and Du, W. (2008). Candidate molecular markers for histological diagnosis of early hepatocellular carcinoma. Intervirology 51 Suppl 1, 42-45.
  22. Shibata, R., Mori, T., Du, W., Chuma, M., Gotoh, M., Shimazu, M., Ueda, M., Hirohashi, S., and Sakamoto, M. (2006). Overexpression of cyclase-associated protein 2 in multistage hepatocarcinogenesis. Clin. Cancer Res. 12, 5363-5368. https://doi.org/10.1158/1078-0432.CCR-05-2245
  23. Shin, S., Buel, G.R., Nagiec, M.J., Han, M.J., Roux, P.P., Blenis, J., and Yoon, S.O. (2019). ERK2 regulates epithelial-to-mesenchymal plasticity through DOCK10-dependent Rac1/FoxO1 activation. Proc. Natl. Acad. Sci. U. S. A. 116, 2967-2976. https://doi.org/10.1073/pnas.1811923116
  24. Sisinni, L., Pietrafesa, M., Lepore, S., Maddalena, F., Condelli, V., Esposito, F., and Landriscina, M. (2019). Endoplasmic reticulum stress and unfolded protein response in breast cancer: the balance between apoptosis and autophagy and its role in drug resistance. Int. J. Mol. Sci. 20, 857. https://doi.org/10.3390/ijms20040857
  25. Urra, H., Dufey, E., Avril, T., Chevet, E., and Hetz, C. (2016). Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer 2, 252-262. https://doi.org/10.1016/j.trecan.2016.03.007
  26. Wang, M. and Kaufman, R.J. (2014). The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 14, 581-597. https://doi.org/10.1038/nrc3800
  27. Woo, H.G., Choi, J.H., Yoon, S., Jee, B.A., Cho, E.J., Lee, J.H., Yu, S.J., Yoon, J.H., Yi, N.J., Lee, K.W., et al. (2017). Integrative analysis of genomic and epigenomic regulation of the transcriptome in liver cancer. Nat. Commun. 8, 839. https://doi.org/10.1038/s41467-017-00991-w
  28. Yadav, R.K., Chae, S.W., Kim, H.R., and Chae, H.J. (2014). Endoplasmic reticulum stress and cancer. J. Cancer Prev. 19, 75-88. https://doi.org/10.15430/JCP.2014.19.2.75
  29. Yoon, S., Choi, J.H., Kim, S.J., Lee, E.J., Shah, M., Choi, S., and Woo, H.G. (2019). EPHB6 mutation induces cell adhesion-mediated paclitaxel resistance via EPHA2 and CDH11 expression. Exp. Mol. Med. 51, 1-12.
  30. Zeisberg, M. and Neilson, E.G. (2009). Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119, 1429-1437. https://doi.org/10.1172/JCI36183