DOI QR코드

DOI QR Code

An Optimized Method for the Construction of a DNA Methylome from Small Quantities of Tissue or Purified DNA from Arabidopsis Embryo

  • Yoo, Hyunjin (Department of Biological Sciences, Seoul National University) ;
  • Park, Kyunghyuk (Department of Biological Sciences, Seoul National University) ;
  • Lee, Jaehoon (Department of Biological Sciences, Seoul National University) ;
  • Lee, Seunga (Department of Biological Sciences, Seoul National University) ;
  • Choi, Yeonhee (Department of Biological Sciences, Seoul National University)
  • 투고 : 2021.04.09
  • 심사 : 2021.06.08
  • 발행 : 2021.08.31

초록

DNA methylation is an important epigenetic mechanism affecting genome structure, gene regulation, and the silencing of transposable elements. Cell- and tissue-specific methylation patterns are critical for differentiation and development in eukaryotes. Dynamic spatiotemporal methylation data in these cells or tissues is, therefore, of great interest. However, the construction of bisulfite sequencing libraries can be challenging if the starting material is limited or the genome size is small, such as in Arabidopsis. Here, we describe detailed methods for the purification of Arabidopsis embryos at all stages, and the construction of comprehensive bisulfite libraries from small quantities of input. We constructed bisulfite libraries by releasing embryos from intact seeds, using a different approach for each developmental stage, and manually picking single-embryo with microcapillaries. From these libraries, reliable Arabidopsis methylome data were collected allowing, on average, 11-fold coverage of the genome using as few as five globular, heart, and torpedo embryos as raw input material without the need for DNA purification step. On the other hand, purified DNA from as few as eight bending torpedo embryos or a single mature embryo is sufficient for library construction when RNase A is treated before DNA extraction. This method can be broadly applied to cells from different tissues or cells from other model organisms. Methylome construction can be achieved using a minimal amount of input material using our method; thereby, it has the potential to increase our understanding of dynamic spatiotemporal methylation patterns in model organisms.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (2020R1A2C2009382) to Y.C., J.L., and S.L. were supported by the Stadelmann-Lee Scholarship Fund, Seoul National University.

참고문헌

  1. Allen, G.C., Flores-Vergara, M.A., Krasynanski, S., Kumar, S., and Thompson, W.F. (2006). A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1, 2320-2325. https://doi.org/10.1038/nprot.2006.384
  2. Bell, C.G., Lowe, R., Adams, P.D., Baccarelli, A.A., Beck, S., Bell, J.T., Christensen, B.C., Gladyshev, V.N., Heijmans, B.T., Horvath, S., et al. (2019). DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249. https://doi.org/10.1186/s13059-019-1824-y
  3. Bouyer, D., Kramdi, A., Kassam, M., Heese, M., Schnittger, A., Roudier, F., and Colot, V. (2017). DNA methylation dynamics during early plant life. Genome Biol. 18, 179. https://doi.org/10.1186/s13059-017-1313-0
  4. Chatterjee, A., Stockwell, P.A., Rodger, E.J., and Morison, I.M. (2012). Comparison of alignment software for genome-wide bisulphite sequence data. Nucleic Acids Res. 40, e79. https://doi.org/10.1093/nar/gks150
  5. Clark, S.J., Smallwood, S.A., Lee, H.J., Krueger, F., Reik, W., and Kelsey, G. (2017). Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc. 12, 534-547. https://doi.org/10.1038/nprot.2016.187
  6. Deal, R.B. and Henikoff, S. (2011). The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat. Protoc. 6, 56-68. https://doi.org/10.1038/nprot.2010.175
  7. Dona, F. and Houseley, J. (2014). Unexpected DNA loss mediated by the DNA binding activity of ribonuclease A. PLoS One 9, e115008. https://doi.org/10.1371/journal.pone.0115008
  8. Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molloy, P.L., and Paul, C.L. (1992). A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U. S. A. 89, 1827-1831. https://doi.org/10.1073/pnas.89.5.1827
  9. Hofmeister, B.T., Lee, K., Rohr, N.A., Hall, D.W., and Schmitz, R.J. (2017). Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol. 18, 155. https://doi.org/10.1186/s13059-017-1288-x
  10. Hsieh, T.F., Ibarra, C.A., Silva, P., Zemach, A., Eshed-Williams, L., Fischer, R.L., and Zilberman, D. (2009). Genome-wide demethylation of Arabidopsis endosperm. Science 324, 1451-1454. https://doi.org/10.1126/science.1172417
  11. Ibarra, C.A., Feng, X., Schoft, V.K., Hsieh, T.F., Uzawa, R., Rodrigues, J.A., Zemach, A., Chumak, N., Machlicova, A., Nishimura, T., et al. (2012). Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337, 1360-1364. https://doi.org/10.1126/science.1224839
  12. Karemaker, I.D. and Vermeulen, M. (2018). Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol. 36, 952-965. https://doi.org/10.1016/j.tibtech.2018.04.002
  13. Kawakatsu, T., Nery, J.R., Castanon, R., and Ecker, J.R. (2017). Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biol. 18, 171. https://doi.org/10.1186/s13059-017-1251-x
  14. Kim, M. and Costello, J. (2017). DNA methylation: an epigenetic mark of cellular memory. Exp. Mol. Med. 49, e322. https://doi.org/10.1038/emm.2017.10
  15. Kim, M.J., Lee, H.J., Choi, M.Y., Kang, S.S., Kim, Y.S., Shin, J.K., and Choi, W.S. (2021). UHRF1 induces methylation of the TXNIP promoter and down-regulates gene expression in cervical cancer. Mol. Cells 44, 146-159. https://doi.org/10.14348/molcells.2021.0001
  16. Krueger, F., Kreck, B., Franke, A., and Andrews, S.R. (2012). DNA methylome analysis using short bisulfite sequencing data. Nat. Methods 9, 145-151. https://doi.org/10.1038/nmeth.1828
  17. Laux, T., Wurschum, T., and Breuninger, H. (2004). Genetic regulation of embryonic pattern formation. Plant Cell 16 Suppl, S190-S202. https://doi.org/10.1105/tpc.016014
  18. Levenson, V.V. (2010). DNA methylation as a universal biomarker. Expert Rev. Mol. Diagn. 10, 481-488. https://doi.org/10.1586/erm.10.17
  19. Li, W., Liu, H., Cheng, Z.J., Su, Y.H., Han, H.N., Zhang, Y., and Zhang, X.S. (2011). DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet. 7, e1002243. https://doi.org/10.1371/journal.pgen.1002243
  20. Lin, J.Y., Le, B.H., Chen, M., Henry, K.F., Hur, J., Hsieh, T.F., Chen, P.Y., Pelletier, J.M., Pellegrini, M., Fischer, R.L., et al. (2017). Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development. Proc. Natl. Acad. Sci. U. S. A. 114, E9730-E9739. https://doi.org/10.1073/pnas.1716758114
  21. Locke, W.J., Guanzon, D., Ma, C., Liew, Y.J., Duesing, K.R., Fung, K.Y.C., and Ross, J.P. (2019). DNA methylation cancer biomarkers: translation to the clinic. Front. Genet. 10, 1150. https://doi.org/10.3389/fgene.2019.01150
  22. Luo, C., Rivkin, A., Zhou, J., Sandoval, J.P., Kurihara, L., Lucero, J., Castanon, R., Nery, J.R., Pinto-Duarte, A., Bui, B., et al. (2018). Robust single-cell DNA methylome profiling with snmC-seq2. Nat. Commun. 9, 3824. https://doi.org/10.1038/s41467-018-06355-2
  23. Miura, F. and Ito, T. (2015). Highly sensitive targeted methylome sequencing by post-bisulfite adaptor tagging. DNA Res. 22, 13-18. https://doi.org/10.1093/dnares/dsu034
  24. Papareddy, R.K., Paldi, K., Paulraj, S., Kao, P., Lutzmayer, S., and Nodine, M.D. (2020). Chromatin regulates expression of small RNAs to help maintain transposon methylome homeostasis in Arabidopsis. Genome Biol. 21, 251. https://doi.org/10.1186/s13059-020-02163-4
  25. Park, K., Frost, J.M., Adair, A.J., Kim, D.M., Yun, H., Brooks, J.S., Fischer, R.L., and Choi, Y. (2016). Optimized methods for the isolation of Arabidopsis female central cells and their nuclei. Mol. Cells 39, 768-775. https://doi.org/10.14348/molcells.2016.0209
  26. Parry, A., Rulands, S., and Reik, W. (2021). Active turnover of DNA methylation during cell fate decisions. Nat. Rev. Genet. 22, 59-66. https://doi.org/10.1038/s41576-020-00287-8
  27. Picard, C.L. and Gehring, M. (2017). Proximal methylation features associated with nonrandom changes in gene body methylation. Genome Biol. 18, 73. https://doi.org/10.1186/s13059-017-1206-2
  28. Raissig, M.T., Gagliardini, V., Jaenisch, J., Grossniklaus, U., and Baroux, C. (2013). Efficient and rapid isolation of early-stage embryos from Arabidopsis thaliana seeds. J. Vis. Exp. (76), 50371.
  29. Rich-Griffin, C., Stechemesser, A., Finch, J., Lucas, E., Ott, S., and Schafer, P. (2020). Single-cell transcriptomics: a high-resolution avenue for plant functional genomics. Trends Plant Sci. 25, 186-197. https://doi.org/10.1016/j.tplants.2019.10.008
  30. Roadmap Epigenomics Consortium, Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., et al. (2015). Integrative analysis of 111 reference human epigenomes. Nature 518, 317-330. https://doi.org/10.1038/nature14248
  31. Salas, L.A., Wiencke, J.K., Koestler, D.C., Zhang, Z., Christensen, B.C., and Kelsey, K.T. (2018). Tracing human stem cell lineage during development using DNA methylation. Genome Res. 28, 1285-1295. https://doi.org/10.1101/gr.233213.117
  32. Smallwood, S.A., Lee, H.J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., Andrews, S.R., Stegle, O., Reik, W., and Kelsey, G. (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817-820. https://doi.org/10.1038/nmeth.3035
  33. Stuart, T. and Satija, R. (2019). Integrative single-cell analysis. Nat. Rev. Genet. 20, 257-272. https://doi.org/10.1038/s41576-019-0093-7
  34. Xiang, D., Venglat, P., Tibiche, C., Yang, H., Risseeuw, E., Cao, Y., Babic, V., Cloutier, M., Keller, W., Wang, E., et al. (2011). Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. Plant Physiol. 156, 346-356. https://doi.org/10.1104/pp.110.171702
  35. Yu, B., Dong, X., Gravina, S., Kartal, O., Schimmel, T., Cohen, J., Tortoriello, D., Zody, R., Hawkins, R.D., and Vijg, J. (2017). Genome-wide, single-cell DNA methylomics reveals increased non-CpG methylation during human oocyte maturation. Stem Cell Rep. 9, 397-407. https://doi.org/10.1016/j.stemcr.2017.05.026
  36. Zeng, Y. and Chen, T. (2019). DNA methylation reprogramming during mammalian development. Genes (Basel) 10, 257. https://doi.org/10.3390/genes10040257

피인용 문헌

  1. MET1-Dependent DNA Methylation Represses Light Signaling and Influences Plant Regeneration in Arabidopsis vol.44, pp.10, 2021, https://doi.org/10.14348/molcells.2021.0160