DOI QR코드

DOI QR Code

Antioxidant and Anti-Cholesterol Activities of Standardized Ecklonia Stolonifera Extract

표준화된 곰피추출물의 항산화 활성 및 콜레스테롤 개선 효과

  • Han, Xionggao (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Kim, Woo-Hyeok (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Choi, Sun-Il (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Men, Xiao (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Lee, Se-jeong (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Jin, Heegu (Department of Food Science and Biotechnology, College of Life Science, CHA University) ;
  • Oh, Hyun-Ji (Department of Food Science and Biotechnology, College of Life Science, CHA University) ;
  • Kang, Dahye (Naturalway Co. Ltd) ;
  • Kim, HyungBin (Naturalway Co. Ltd) ;
  • Lee, Boo-Yong (Department of Food Science and Biotechnology, College of Life Science, CHA University) ;
  • Lee, Ok-Hwan (Department of Food Biotechnology and Environmental Science, Kangwon National University)
  • 한웅호 (강원대학교 식품환경융합학과) ;
  • 김우혁 (강원대학교 바이오산업공학부 식품생명공학전공) ;
  • 최선일 (강원대학교 식품환경융합학과) ;
  • 문효 (강원대학교 식품환경융합학과) ;
  • 이세정 (강원대학교 식품환경융합학과) ;
  • 진희구 (차의과학대학교 식품생명공학과) ;
  • 오현지 (차의과학대학교 식품생명공학과) ;
  • 강다혜 ((주)네추럴웨이) ;
  • 김형빈 ((주)네추럴웨이) ;
  • 이부용 (차의과학대학교 식품생명공학과) ;
  • 이옥환 (강원대학교 식품환경융합학과)
  • Received : 2021.08.13
  • Accepted : 2021.08.25
  • Published : 2021.08.30

Abstract

Ecklonia stolonifera, which belongs to the family Laminariaceae, is an edible perennial brown marine alga that is widely distributed, and is rich in polyphenols, including dieckol. Here, we investigated the radical scavenging activities of E. stolonifera extract (ESE) using various in vitro models. We further evaluated the effect of ESE on the cholesterol secretion inhibition activity in HepG2 cells, as well as the hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase activity. Our results showed that the total phenol, total flavonoid, and dieckol contents of ESE were 9.64±0.04 mg GAE/g, 2.72±0.08 mg RE/g and 27.42±0.66 mg/g, respectively. The antioxidant activity of ESE increased in a dose-dependent manner. In addition, the ESE inhibited cholesterol secretion from HepG2 cells with anti-HMG-CoA reductase activity. These results suggested that ESE possesses antioxidant and anti-cholesterol activities, and can therefore be used as a preclinical bioresource for development of health functional foods.

본 연구에서는 표준화된 곰피추출물의 항산화 및 콜레스테롤 개선에 대한 효능평가를 통해 건강기능식품 소재로서의 가치를 검토하기 위해 총 폴리페놀, 총 플라보노이드 및 dieckol 함량을 측정하였으며 DPPH, ABTS radical 소거능, reducing power 및 FRAP 활성을 통하여 곰피추출물의 in vitro 항산화 활성을 조사하였고 표준화된 곰피추출물의 HMG-CoA reductase 저해 활성 및 세포 내 콜레스테롤 생성 억제 효능을 평가하였다. 표준화된 곰피추출물의 총 폴리페놀, 총 플라보노이드 및 dieckol 함량은 각각 9.64±0.04 mg GAE/g, 2.72±0.08 mg RE/g, 27.42±0.66 mg/g으로 나타났다. 표준화된 곰피추출물의 in vitro 항산화활성, HMG-CoA reductase 저해활성 및 세포 내 콜레스테롤 생성 억제 효능은 농도의존적으로 증가하는 경향을 보였으며 이는 표준화된 곰피추출물에 함유되어 있는 페놀성 화합물에 기인된 효능으로 사료되며 항산화성분, 항산화 효과, 콜레스테를 개선 효능간의 상관관계가 있음을 확인하였다. 향후, 표준화된 곰피추출물에 대한 in vivo 모델에서의 전임상 연구 및 작용기전 입증되면 인체적용시험을 통해 이중기능성을 갖는 건강기능식품의 개발이 가능할 것으로 사료된다.

Keywords

Acknowledgement

이 논문은 2021년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(곰피추출물을 이용한 체지방 감소 개별인정형 소재 개발 및 제품 상용화).

References

  1. Lee, S.J., Park, J.Y., Nam, C.M., Jee, S.H., The prevalence estimation of metabolic syndrome and it's related factors based on data from general health medical examination: A multi-center study. J. Health Info. Stat., 33 119-134 (2008).
  2. National Institutes of Health (NIH). Lowering blood cholesterol to prevent heart disease. JAMA, 253, 2080-2086 (1985). https://doi.org/10.1001/jama.1985.03350380096029
  3. Ebrahim, S., Sung, J.H., Song, Y.M., Ferrer, R.L., Lawlor, D.A., Smith, G.D., Serum cholesterol, haemorrhagic stroke, ischaemic stroke, and myocardial infarction: Korean national health system prospective cohort study. BMJ, 333, 22-27 (2006). https://doi.org/10.1136/bmj.38855.610324.80
  4. Tyrovolas, S., Panagiotakos, D.B., The role of Mediterranean type of diet on the development of cancer and cardiovascular disease, in the elderly: A systematic review. Maturitas, 65, 122-130 (2010). https://doi.org/10.1016/j.maturitas.2009.07.003
  5. Qureshi, A.A., Abuirmeileh, N., Din, Z.Z., Elson, C.E., Burger, W.C., Inhibition of cholesterol and fatty acid biosynthesis in liver enzymes and chicken hepatocytes by polar fractions of garlic. Lipids, 18, 343-348 (1983). https://doi.org/10.1007/BF02537229
  6. Sirtory, C.R., Pharmacology and mechanism of action of the new HMG CoA reductase inhibitors. Pharmcol. Res., 22, 555-563 (1990). https://doi.org/10.1016/S1043-6618(05)80047-7
  7. Brown, S.L., Lowered serum cholesterol and low mood. BMJ, 313, 637-638 (1996). https://doi.org/10.1136/bmj.313.7058.637
  8. Shin, M.K., Han, S.H., Effects of methanol extracts from bamboo (P seudosasa uaponica Makino) leaves extracts on lipid metabolism in rats fed high fat and high cholesterol diet. J. Korean Soc. Food Cult., 17 30-36 (2002).
  9. Kim, T.H., Son, Y.K., Hwang, K.H., Kim, M.H., Effects of Angelica keiskei Koidzumi and turmeric extract supplementation on serum lipid parameters in hypercholesterolemic diet or P-407-induced hyperlipidemic rats. J. Korean Soc. Food Sci. Nutr., 37, 708-713 (2008). https://doi.org/10.3746/jkfn.2008.37.6.708
  10. Buyukokuroglu, M.E., Gulcin, I., Oktay, M., Kufrevioglu, O.I., In vitro antioxidant properties of dantrolene sodium. Pharmacol. Res., 44, 491-494 (2001). https://doi.org/10.1006/phrs.2001.0890
  11. Stranahan, A.M., Cutler, R.G., Button, C., Telljohann, R., Mattson, M.P., Diet-induced elevations in serum cholesterol are associated with alterations in hippocampal lipid metabolism and increased oxidative stress. J. Neurochem., 118, 611-615 (2011). https://doi.org/10.1111/j.1471-4159.2011.07351.x
  12. Kim, M.K., Cho, S.W., Park, Y.K., Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels. Nutr. Res. Pract., 6, 155-161 (2012). https://doi.org/10.4162/nrp.2012.6.2.155
  13. Manandhar, B., Wagle, A., Seong, S.H., Paudel, P., Kim, H.R., Jung, H.A., Choi, J.S., Phlorotannins with potential anti-tyrosinase and antioxidant activity isolated from the marine seaweed ecklonia stolonifera. Antioxidants, 8, 240 (2019). https://doi.org/10.3390/antiox8080240
  14. Goo, H.R., Choi, J.S., Na, D.H., Quantitative determination of major phlorotannins in ecklonia stolonifera. Arch. Pharm. Res., 33, 539-544 (2010). https://doi.org/10.1007/s12272-010-0407-y
  15. Kang, H.S., Chung, H.Y., Kim, J.Y., Son, B.W., Jung, H.A., Choi, J.S., Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch. Pharm. Res. 27, 194-198 (2004). https://doi.org/10.1007/BF02980106
  16. Choi, J.S., Han, Y.R., Byeon, J.S., Choung, S.Y., Sohn, H.S., Jung, H.A., Protective effect of fucosterol isolated from the edible brown algae, Ecklonia stolonifera and Eisenia bicyclis, on tert-butyl hydroperoxide- and tacrine-induced HepG2 cell injury. J. Pharm. Pharmacol., 67, 1170-1178 (2015). https://doi.org/10.1111/jphp.12404
  17. Park, E.Y., Kim, E.H., Kim, M.H., Seo, Y.W., Lee, J.I., Jun, H.S., Polyphenol-rich fraction of brown alga Ecklonia cava collected from Gijang, Korea, reduces obesity and glucose levels in high-fat diet-induced obese mice. Evid. Based complement. Alternat. Med., 2012, 418912 (2012).
  18. Yu, S.M., Kim, W.K., Health beneficial effects of brown algae ecklonia stolonifera in liver. Food Sci. Ind., 51, 334-342 (2018). https://doi.org/10.23093/FSI.2018.51.4.334
  19. Duval, B., Shetty, K., The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. J. Food Biochem., 25, 361-377 (2007). https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  20. Bang, C.Y., Byun, J.H., Choi, H.K., Choi, J.S., Choung, S.Y., Protective effects of Ecklonia stolonifera extract on ethanol-induced fatty liver in rats. Biomol. Ther., 24, 650-658 (2016). https://doi.org/10.4062/biomolther.2016.176
  21. Ozgen, M., Reese, R.N., Tulio Jr, A.Z., Scheerens, J.C., Miller A.R., Modified 2,2-azino-bis-3-ethylbenzothiazoline6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2' diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 54, 1151-1157 (2006). https://doi.org/10.1021/jf051960d
  22. Oyaizu, M., Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine. Jpn. J. Nutr., 44, 307-315 (1986). https://doi.org/10.5264/eiyogakuzashi.44.307
  23. Benzie, I.F., Stranin, J.J., The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem., 239, 70-76 (1996). https://doi.org/10.1006/abio.1996.0292
  24. Lee, S.J., Shin, J.H., Kang, M.J., Jung, W.J., Ryu, J.H., Kim, R.J., Sung, N.J., Antioxidants activity of aged red garlic. J. Life Sci., 20, 775-781 (2010). https://doi.org/10.5352/JLS.2010.20.5.775
  25. Ou, B., Hampsch-Woodill, M., Prior, R.L., Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49, 4619-4626 (2001). https://doi.org/10.1021/jf010586o
  26. Chae, K.S., Lee, S.J., Gim, S.W., Cho, S.W., Kwon, J.W., Kim, Y.S., Improvement in antioxidant activities and cholesterol secretion inhibition abilities of black raspberry extracts upon maturation. Korean J. Food Preserv., 27, 325-332 (2020). https://doi.org/10.11002/kjfp.2020.27.3.325
  27. Lachenmeier, D.W., Monakhova, Y.B., Kuballa, T., Lobell-Behrends, S., Maixner, S., Kohl-Himmelseher, M., Waldner, A., Steffen, C., NMR evaluation of total statin content and HMG-CoA reductase inhibition in red yeast rice (Monascus spp.) food supplements. Chin. Med., 7, 1-7 (2012). https://doi.org/10.1186/1749-8546-7-1
  28. Hallivell, B., Aeschbach, R., Loliger, J., Aruoma, O.I., The characterization of antioxidants. Food Chem. Toxicol., 33, 601-617 (1995). https://doi.org/10.1016/0278-6915(95)00024-V
  29. Kim, H.J., Jun, B.S., Kim, S.K., Cha, J.Y., Cho, Y.S., Polyphenolic compound content and antioxidative activities by extracts from seed, sprout and flower of safflower (Carthamus tinctorius L). J. Korean Soc. Food Sci. Nutr., 29, 1127-1132 (2000).
  30. Son, H.J., Studies on the Antioxidant Activity and MetalChelating Ability of Seaweed by the Cultivating Locations. MS thesis, Kosin University, Busan, Korea (2007).
  31. Jin, H.G., Lee, K.P., Chei, S.W., Oh, H.J., Lee, K.P., Lee, B.Y., Ecklonia stolonifera Extract Suppresses Lipid Accumulation by Promoting Lipolysis and Adipose Browning in High-Fat Diet-Induced Obese Male Mice. Cells, 9, 871 (2020). https://doi.org/10.3390/cells9040871
  32. Kim, J.H., Kang, H.M., Lee, S.H., Lee, J.Y., Park, L.Y., Anti-oxidant and α-glucosidase inhibition activity of seaweed extracts. Korean J. Food Preserv., 22, 290-296 (2015). https://doi.org/10.11002/kjfp.2015.22.2.290
  33. Kuda, T., Kunii, T., Goto, H., Suzuki, T., Yano, T., Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem., 103, 900-905 (2007). https://doi.org/10.1016/j.foodchem.2006.09.042
  34. Cerqueira, N.M.F.S.A., Oliveira, E.F., Gesto, D.S., Santos-Martins, D., Moreira, C., Moorthy, H.N., Ramos, M.J., Fernandes, P.A., Cholesterol biosynthesis: A mechanistic overview. Biochemistry, 55, 5483-5506 (2016). https://doi.org/10.1021/acs.biochem.6b00342
  35. Yeo, A.R., Lee, J., Tae, I.H., Park, S.R., Cho, Y.H., Lee, B.H., Shin, H.C., Kim, S.H., Yoo, Y.C., Anti-hyperlipidemic effect of polyphenol extract (Seapolynol™) and dieckol isolated from Ecklonia cava in in vivo and in vitro models. Prev. Nutr. Food Sci., 17, 1-7 (2012). https://doi.org/10.3746/pnf.2012.17.1.001
  36. Jo, H.G., Kim, M.J., Cheong, S.H., Sea tangle (Saccharina japonica), an edible brown seaweed, improves serum lipid profiles and antioxidant status in rats fed high-fat and high-cholesterol diets. J. Appl. Phycol., 31, 3957-3967 (2019). https://doi.org/10.1007/s10811-019-01849-y