DOI QR코드

DOI QR Code

Proprioception, the regulator of motor function

  • Received : 2021.03.22
  • Accepted : 2021.05.20
  • Published : 2021.08.31

Abstract

In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF-2020R1A4A1019436).

References

  1. Maniere G and Coureaud G (2019) Editorial: from stimulus to behavioral decision-making. Front Behav Neurosci 13, 274 https://doi.org/10.3389/fnbeh.2019.00274
  2. Singh AK (1991) The comprehensive history of psychology, Motilal Banarsidass
  3. Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R and Lehman S (2000) How animals move: an integrative view. Science 288, 100-106 https://doi.org/10.1126/science.288.5463.100
  4. Bell C (1834) The hand; its mechanism and vital endowments, as evincing design, W. Pickering, London, 348
  5. Sherrington CS (1906) The integrative action of the nervous system, Yale University Press, New Haven, CT, US, 411
  6. Sherrington CS (1913) Reflex inhibition as a factor in the co-ordination of movements and postures. Q J Exp Physiol 6, 251-310 https://doi.org/10.1113/expphysiol.1913.sp000142
  7. Dietz V (2013) Gait disorders. Handb Clin Neurol 110, 133-143 https://doi.org/10.1016/B978-0-444-52901-5.00012-5
  8. Proske U and Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92, 1651-1697 https://doi.org/10.1152/physrev.00048.2011
  9. Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3, 781-790 https://doi.org/10.1038/nrn939
  10. Pearson KG (1995) Reflex reversal in the walking systems of mammals and arthropods; in 135-141, Springer US
  11. Ruffini A (1898) On the minute anatomy of the neuromuscular spindles of the cat, and on their physiological significance. J Physiol 23, 190-208.3 https://doi.org/10.1113/jphysiol.1898.sp000723
  12. Gandevia SC and McCloskey DI (1976) Joint sense, muscle sense, and their combination as position sense, measured at the distal interphalangeal joint of the middle finger. J Physiol 260, 387-407 https://doi.org/10.1113/jphysiol.1976.sp011521
  13. Moore JC (1984) The Golgi tendon organ: a review and update. Am J Occup Ther 38, 227-236 https://doi.org/10.5014/ajot.38.4.227
  14. Windhorst U (2007) Muscle proprioceptive feedback and spinal networks. Brain Res Bull 73, 155-202 https://doi.org/10.1016/j.brainresbull.2007.03.010
  15. Burke W (1954) An organ for proprioception and vibration sense in Carcinus maenas. J Exp Biol 31, 127-138 https://doi.org/10.1242/jeb.31.1.127
  16. Pringle JWS (1938) Proprioception in insects I. A new type of mechanical receptor from the palps of the cockroach. J Exp Biol 15, 101-113 https://doi.org/10.1242/jeb.15.1.101
  17. White JG, Southgate E, Thomson JN and Brenner S (1986) The structure of the nervous-system of the nematode Caenorhabditis-elegans. Philos Trans R Soc B Biol Sci 314, 1-340
  18. Jarrell TA, Wang Y, Bloniarz AE et al (2012) The connectome of a decision-making neural network. Science 337, 437-444 https://doi.org/10.1126/science.1221762
  19. Butler VJ, Branicky R, Yemini E et al (2015) A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans. J R Soc Interface 12, 20140963 https://doi.org/10.1098/rsif.2014.0963
  20. Fang-Yen C, Wyart M, Xie J et al (2010) Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 107, 20323-20328 https://doi.org/10.1073/pnas.1003016107
  21. Karbowski J, Cronin CJ, Seah A, Mendel JE, Cleary D and Sternberg PW (2006) Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. J Theor Biol 242, 652-669 https://doi.org/10.1016/j.jtbi.2006.04.012
  22. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94 https://doi.org/10.1093/genetics/77.1.71
  23. Puckett Robinson C, Schwarz EM and Sternberg PW (2013) Identification of DVA interneuron regulatory sequences in Caenorhabditis elegans. PLoS One 8, e54971 https://doi.org/10.1371/journal.pone.0054971
  24. Wicks SR, Roehrig CJ and Rankin CH (1996) A dynamic network simulation of the nematode tap withdrawal circuit: predictions concerning synaptic function using behavioral criteria. J Neurosci 16, 4017-4031 https://doi.org/10.1523/JNEUROSCI.16-12-04017.1996
  25. Li W, Feng ZY, Sternberg PW and Xu XZS (2006) A C-elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440, 684-687 https://doi.org/10.1038/nature04538
  26. Xiao R and Xu XZS (2011) C. elegans TRP channels. Adv Exp Med Biol 704, 323-339 https://doi.org/10.1007/978-94-007-0265-3_18
  27. Hu ZT, Pym ECG, Babu K, Murray ABV and Kaplan JM (2011) A neuropeptide-mediated stretch response links muscle contraction to changes in neurotransmitter release. Neuron 71, 92-102 https://doi.org/10.1016/j.neuron.2011.04.021
  28. Way JC and Chalfie M (1989) The Mec-3 gene of Caenorhabditis-elegans requires its own product for maintained expression and is expressed in 3 neuronal celltypes. Genes Dev 3, 1823-1833 https://doi.org/10.1101/gad.3.12a.1823
  29. Chatzigeorgiou M, Yoo S, Watson JD et al (2010) Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nat Neurosci 13, 861-868 https://doi.org/10.1038/nn.2581
  30. Albeg A, Smith CJ, Chatzigeorgiou M et al (2011) C-elegans multi-dendritic sensory neurons: morphology and function. Mol Cell Neurosci 46, 308-317 https://doi.org/10.1016/j.mcn.2010.10.001
  31. Liang X, Dong XT, Moerman DG, Shen K and Wang XM (2015) Sarcomeres pattern proprioceptive sensory dendritic endings through UNC-52/Perlecan in C. elegans. Dev Cell 33, 388-400 https://doi.org/10.1016/j.devcel.2015.03.010
  32. Huang MX and Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis-elegans. Nature 367, 467-470 https://doi.org/10.1038/367467a0
  33. Yeon J, Kim J, Kim DY et al (2018) A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels. PLoS Biol 16, e2004929 https://doi.org/10.1371/journal.pbio.2004929
  34. Gray JM, Hill JJ and Bargmann CI (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102, 3184-3191 https://doi.org/10.1073/pnas.0409009101
  35. Korta J, Clark DA, Gabel CV, Mahadevan L and Samuel ADT (2007) Mechanosensation and mechanical load modulate the locomotory gait of swimming C-elegans. J Exp Biol 210, 2383-2389 https://doi.org/10.1242/jeb.004572
  36. Pierce-Shimomura JT, Chen BL, Mun JJ, Ho R, Sarkis R and McIntire SL (2008) Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proc Natl Acad Sci U S A 105, 20982-20987 https://doi.org/10.1073/pnas.0810359105
  37. Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4, 573-586 https://doi.org/10.1038/nrn1137
  38. Marder E and Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76, 687-717 https://doi.org/10.1152/physrev.1996.76.3.687
  39. Denham JE, Ranner T and Cohen N (2018) Signatures of proprioceptive control in Caenorhabditis elegans locomotion. Philos Trans R Soc Lond B Biol Sci 373, 20180208 https://doi.org/10.1098/rstb.2018.0208
  40. Fieseler C, Kunert-Graf J and Kutz JN (2018) The control structure of the nematode Caenorhabditis elegans: neurosensory integration and proprioceptive feedback. J Biomech 74, 1-8 https://doi.org/10.1016/j.jbiomech.2018.03.046
  41. Wen Q, Po MD, Hulme E et al (2012) Proprioceptive coupling within motor neurons drives C. elegans forward locomotion. Neuron 76, 750-761 https://doi.org/10.1016/j.neuron.2012.08.039
  42. Fouad AD, Teng S, Mark JR et al (2018) Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion. eLife 7, e29913 https://doi.org/10.7554/eLife.29913
  43. Gao S, Guan SA, Fouad AD et al (2018) Excitatory motor neurons are local oscillators for backward locomotion. eLife 7, e29915 https://doi.org/10.7554/eLife.29915
  44. Shanbhag SR, Singh K and Naresh Singh R (1992) Ultrastructure of the femoral chordotonal organs and their novel synaptic organization in the legs of Drosophila melanogaster Meigen (Diptera : Drosophilidae). Int J Insect Morphol Embryol 21, 311-322 https://doi.org/10.1016/0020-7322(92)90026-J
  45. Tuthill JC and Wilson RI (2016) Mechanosensation and adaptive motor control in insects. Curr Biol 26, R1022-R1038 https://doi.org/10.1016/j.cub.2016.06.070
  46. Mendes CS, Bartos I, Akay T, Marka S and Mann RS (2013) Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. eLife 2, e00231 https://doi.org/10.7554/eLife.00231
  47. Mamiya A, Gurung P and Tuthill JC (2018) Neural coding of leg proprioception in Drosophila. Neuron 100, 636-650 https://doi.org/10.1016/j.neuron.2018.09.009
  48. Akitake B, Ren Q, Boiko N et al (2015) Coordination and fine motor control depend on Drosophila TRPgamma. Nat Commun 6, 7288 https://doi.org/10.1038/ncomms8288
  49. Cheng LE, Song W, Looger LL, Jan LY and Jan YN (2010) The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67, 373-380 https://doi.org/10.1016/j.neuron.2010.07.004
  50. Walker RG, Willingham AT and Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287, 2229-2234 https://doi.org/10.1126/science.287.5461.2229
  51. Lee E, Sivan-Loukianova E, Eberl DF and Kernan MJ (2008) An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol 18, 1899-1906 https://doi.org/10.1016/j.cub.2008.11.020
  52. Chan WP, Prete F and Dickinson MH (1998) Visual input to the efferent control system of a fly's "gyroscope". Science 280, 289-292 https://doi.org/10.1126/science.280.5361.289
  53. Bartussek J and Lehmann FO (2016) Proprioceptive feedback determines visuomotor gain in Drosophila. R Soc Open Sci 3, 150562 https://doi.org/10.1098/rsos.150562
  54. Fox LE, Soll DR and Wu CF (2006) Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation. J Neurosci 26, 1486-1498 https://doi.org/10.1523/JNEUROSCI.4749-05.2006
  55. Suster ML and Bate M (2002) Embryonic assembly of a central pattern generator without sensory input. Nature 416, 174-178 https://doi.org/10.1038/416174a
  56. Hughes CL and Thomas JB (2007) A sensory feedback circuit coordinates muscle activity in Drosophila. Mol Cell Neurosci 35, 383-396 https://doi.org/10.1016/j.mcn.2007.04.001
  57. Corty MM, Tam J and Grueber WB (2016) Dendritic diversification through transcription factor-mediated suppression of alternative morphologies. Development 143, 1351-1362 https://doi.org/10.1242/dev.130906
  58. Grueber WB, Jan LY and Jan YN (2002) Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129, 2867-2878 https://doi.org/10.1242/dev.129.12.2867
  59. Vaadia RD, Li WZ, Voleti V, Singhania A, Hillman EMC and Grueber WB (2019) Characterization of proprioceptive system dynamics in behaving Drosophila larvae using high-speed volumetric microscopy. Curr Biol 29, 935-944 https://doi.org/10.1016/j.cub.2019.01.060
  60. Schneider-Mizell CM, Gerhard S, Longair M et al (2016) Quantitative neuroanatomy for connectomics in Drosophila. eLife 5, e12059 https://doi.org/10.7554/eLife.12059
  61. Fushiki A, Zwart MF, Kohsaka H, Fetter RD, Cardona A and Nose A (2016) A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. eLife 5, e13253 https://doi.org/10.7554/eLife.13253
  62. He L, Gulyanon S, Mihovilovic Skanata M et al (2019) Direction selectivity in Drosophila proprioceptors requires the mechanosensory channel Tmc. Curr Biol 29, 945-956 e943 https://doi.org/10.1016/j.cub.2019.02.025
  63. Guo Y, Wang Y, Zhang W et al (2016) Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion. Proc Natl Acad Sci U S A 113, 7243-7248 https://doi.org/10.1073/pnas.1606537113
  64. Suslak TJ, Watson S, Thompson KJ et al (2015) Piezo is essential for amiloride-sensitive stretch-activated mechanotransduction in larval Drosophila dorsal bipolar dendritic sensory neurons. PLoS One 10, e0130969 https://doi.org/10.1371/journal.pone.0130969
  65. Tuthill JC and Azim E (2018) Proprioception. Curr Biol 28, R194-R203 https://doi.org/10.1016/j.cub.2018.01.064
  66. Wang F, Belanger E, Cote SL et al (2018) Sensory afferents use different coding strategies for heat and cold. Cell Reports 23, 2001-2013 https://doi.org/10.1016/j.celrep.2018.04.065
  67. de Nooij JC, Doobar S and Jessell TM (2013) Etv1 inactivation reveals proprioceptor subclasses that reflect the level of NT3 expression in muscle targets. Neuron 77, 1055-1068 https://doi.org/10.1016/j.neuron.2013.01.015
  68. Levanon D, Bettoun D, Harris-Cerruti C et al (2002) The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 21, 3454-3463 https://doi.org/10.1093/emboj/cdf370
  69. Abraira VE and Ginty DD (2013) The sensory neurons of touch. Neuron 79, 618-639 https://doi.org/10.1016/j.neuron.2013.07.051
  70. Usoskin D, Furlan A, Islam S et al (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18, 145-153 https://doi.org/10.1038/nn.3881
  71. Sharma N, Flaherty K, Lezgiyeva K, Wagner DE, Klein AM and Ginty DD (2020) The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392-398 https://doi.org/10.1038/s41586-019-1900-1
  72. Oliver KM, Florez-Paz DM, Badea TC, Mentis GZ, Menon V and de Nooij JC (2020) Molecular development of muscle spindle and Golgi tendon organ sensory afferents revealed by single proprioceptor transcriptome analysis. bioRxiv, 2020.04.03.023986
  73. Woo SH, Lukacs V, de Nooij JC et al (2015) Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci 18, 1756-1762 https://doi.org/10.1038/nn.4162
  74. Florez-Paz D, Bali KK, Kuner R and Gomis A (2016) A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Sci Rep 6, 25923 https://doi.org/10.1038/srep25923
  75. Daigle TL, Madisen L, Hage TA et al (2018) A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465-480 https://doi.org/10.1016/j.cell.2018.06.035
  76. Adrian ED and Zotterman Y (1926) The impulses produced by sensory nerve-endings: part II. The response of a single end-organ. J Physiol 61, 151-171 https://doi.org/10.1113/jphysiol.1926.sp002281
  77. Hong GS, Lee B, Wee J et al (2016) Tentonin 3/TMEM150c confers distinct mechanosensitive currents in dorsal-root ganglion neurons with proprioceptive function. Neuron 91, 107-118 https://doi.org/10.1016/j.neuron.2016.05.029
  78. Hillier S, Immink M and Thewlis D (2015) Assessing proprioception: a systematic review of possibilities. Neurorehabil Neural Repair 29, 933-949 https://doi.org/10.1177/1545968315573055
  79. Chesler AT, Szczot M, Bharucha-Goebel D et al (2016) The role of PIEZO2 in human mechanosensation. N Engl J Med 375, 1355-1364 https://doi.org/10.1056/NEJMoa1602812
  80. Masingue M, Faure J, Sole G, Stojkovic T and LeonardLouis S (2019) A novel nonsense PIEZO2 mutation in a family with scoliosis and proprioceptive defect. Neuromuscul Disord 29, 75-79 https://doi.org/10.1016/j.nmd.2018.10.005
  81. Akay T, Tourtellotte WG, Arber S and Jessell TM (2014) Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proc Natl Acad Sci U S A 111, 16877-16882 https://doi.org/10.1073/pnas.1419045111
  82. Arber S, Ladle DR, Lin JH, Frank E and Jessell TM (2000) ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101, 485-498 https://doi.org/10.1016/S0092-8674(00)80859-4
  83. Takeoka A and Arber S (2019) Functional local proprioceptive feedback circuits initiate and maintain locomotor recovery after spinal cord injury. Cell Rep 27, 71-85 https://doi.org/10.1016/j.celrep.2019.03.010
  84. Mathis A, Mamidanna P, Cury KM et al (2018) Deep-LabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci 21, 1281-1289 https://doi.org/10.1038/s41593-018-0209-y
  85. Wiltschko AB, Tsukahara T, Zeine A et al (2020) Revealing the structure of pharmacobehavioral space through motion sequencing. Nat Neurosci 23, 1433-1443 https://doi.org/10.1038/s41593-020-00706-3