Acknowledgement
This study was supported by the National Research Foundation of Korea (NRF-2020R1A4A1019436).
References
- Maniere G and Coureaud G (2019) Editorial: from stimulus to behavioral decision-making. Front Behav Neurosci 13, 274 https://doi.org/10.3389/fnbeh.2019.00274
- Singh AK (1991) The comprehensive history of psychology, Motilal Banarsidass
- Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R and Lehman S (2000) How animals move: an integrative view. Science 288, 100-106 https://doi.org/10.1126/science.288.5463.100
- Bell C (1834) The hand; its mechanism and vital endowments, as evincing design, W. Pickering, London, 348
- Sherrington CS (1906) The integrative action of the nervous system, Yale University Press, New Haven, CT, US, 411
- Sherrington CS (1913) Reflex inhibition as a factor in the co-ordination of movements and postures. Q J Exp Physiol 6, 251-310 https://doi.org/10.1113/expphysiol.1913.sp000142
- Dietz V (2013) Gait disorders. Handb Clin Neurol 110, 133-143 https://doi.org/10.1016/B978-0-444-52901-5.00012-5
- Proske U and Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92, 1651-1697 https://doi.org/10.1152/physrev.00048.2011
- Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3, 781-790 https://doi.org/10.1038/nrn939
- Pearson KG (1995) Reflex reversal in the walking systems of mammals and arthropods; in 135-141, Springer US
- Ruffini A (1898) On the minute anatomy of the neuromuscular spindles of the cat, and on their physiological significance. J Physiol 23, 190-208.3 https://doi.org/10.1113/jphysiol.1898.sp000723
- Gandevia SC and McCloskey DI (1976) Joint sense, muscle sense, and their combination as position sense, measured at the distal interphalangeal joint of the middle finger. J Physiol 260, 387-407 https://doi.org/10.1113/jphysiol.1976.sp011521
- Moore JC (1984) The Golgi tendon organ: a review and update. Am J Occup Ther 38, 227-236 https://doi.org/10.5014/ajot.38.4.227
- Windhorst U (2007) Muscle proprioceptive feedback and spinal networks. Brain Res Bull 73, 155-202 https://doi.org/10.1016/j.brainresbull.2007.03.010
- Burke W (1954) An organ for proprioception and vibration sense in Carcinus maenas. J Exp Biol 31, 127-138 https://doi.org/10.1242/jeb.31.1.127
- Pringle JWS (1938) Proprioception in insects I. A new type of mechanical receptor from the palps of the cockroach. J Exp Biol 15, 101-113 https://doi.org/10.1242/jeb.15.1.101
- White JG, Southgate E, Thomson JN and Brenner S (1986) The structure of the nervous-system of the nematode Caenorhabditis-elegans. Philos Trans R Soc B Biol Sci 314, 1-340
- Jarrell TA, Wang Y, Bloniarz AE et al (2012) The connectome of a decision-making neural network. Science 337, 437-444 https://doi.org/10.1126/science.1221762
- Butler VJ, Branicky R, Yemini E et al (2015) A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans. J R Soc Interface 12, 20140963 https://doi.org/10.1098/rsif.2014.0963
- Fang-Yen C, Wyart M, Xie J et al (2010) Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 107, 20323-20328 https://doi.org/10.1073/pnas.1003016107
- Karbowski J, Cronin CJ, Seah A, Mendel JE, Cleary D and Sternberg PW (2006) Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. J Theor Biol 242, 652-669 https://doi.org/10.1016/j.jtbi.2006.04.012
- Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94 https://doi.org/10.1093/genetics/77.1.71
- Puckett Robinson C, Schwarz EM and Sternberg PW (2013) Identification of DVA interneuron regulatory sequences in Caenorhabditis elegans. PLoS One 8, e54971 https://doi.org/10.1371/journal.pone.0054971
- Wicks SR, Roehrig CJ and Rankin CH (1996) A dynamic network simulation of the nematode tap withdrawal circuit: predictions concerning synaptic function using behavioral criteria. J Neurosci 16, 4017-4031 https://doi.org/10.1523/JNEUROSCI.16-12-04017.1996
- Li W, Feng ZY, Sternberg PW and Xu XZS (2006) A C-elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440, 684-687 https://doi.org/10.1038/nature04538
- Xiao R and Xu XZS (2011) C. elegans TRP channels. Adv Exp Med Biol 704, 323-339 https://doi.org/10.1007/978-94-007-0265-3_18
- Hu ZT, Pym ECG, Babu K, Murray ABV and Kaplan JM (2011) A neuropeptide-mediated stretch response links muscle contraction to changes in neurotransmitter release. Neuron 71, 92-102 https://doi.org/10.1016/j.neuron.2011.04.021
- Way JC and Chalfie M (1989) The Mec-3 gene of Caenorhabditis-elegans requires its own product for maintained expression and is expressed in 3 neuronal celltypes. Genes Dev 3, 1823-1833 https://doi.org/10.1101/gad.3.12a.1823
- Chatzigeorgiou M, Yoo S, Watson JD et al (2010) Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nat Neurosci 13, 861-868 https://doi.org/10.1038/nn.2581
- Albeg A, Smith CJ, Chatzigeorgiou M et al (2011) C-elegans multi-dendritic sensory neurons: morphology and function. Mol Cell Neurosci 46, 308-317 https://doi.org/10.1016/j.mcn.2010.10.001
- Liang X, Dong XT, Moerman DG, Shen K and Wang XM (2015) Sarcomeres pattern proprioceptive sensory dendritic endings through UNC-52/Perlecan in C. elegans. Dev Cell 33, 388-400 https://doi.org/10.1016/j.devcel.2015.03.010
- Huang MX and Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis-elegans. Nature 367, 467-470 https://doi.org/10.1038/367467a0
- Yeon J, Kim J, Kim DY et al (2018) A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels. PLoS Biol 16, e2004929 https://doi.org/10.1371/journal.pbio.2004929
- Gray JM, Hill JJ and Bargmann CI (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102, 3184-3191 https://doi.org/10.1073/pnas.0409009101
- Korta J, Clark DA, Gabel CV, Mahadevan L and Samuel ADT (2007) Mechanosensation and mechanical load modulate the locomotory gait of swimming C-elegans. J Exp Biol 210, 2383-2389 https://doi.org/10.1242/jeb.004572
- Pierce-Shimomura JT, Chen BL, Mun JJ, Ho R, Sarkis R and McIntire SL (2008) Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proc Natl Acad Sci U S A 105, 20982-20987 https://doi.org/10.1073/pnas.0810359105
- Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4, 573-586 https://doi.org/10.1038/nrn1137
- Marder E and Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76, 687-717 https://doi.org/10.1152/physrev.1996.76.3.687
- Denham JE, Ranner T and Cohen N (2018) Signatures of proprioceptive control in Caenorhabditis elegans locomotion. Philos Trans R Soc Lond B Biol Sci 373, 20180208 https://doi.org/10.1098/rstb.2018.0208
- Fieseler C, Kunert-Graf J and Kutz JN (2018) The control structure of the nematode Caenorhabditis elegans: neurosensory integration and proprioceptive feedback. J Biomech 74, 1-8 https://doi.org/10.1016/j.jbiomech.2018.03.046
- Wen Q, Po MD, Hulme E et al (2012) Proprioceptive coupling within motor neurons drives C. elegans forward locomotion. Neuron 76, 750-761 https://doi.org/10.1016/j.neuron.2012.08.039
- Fouad AD, Teng S, Mark JR et al (2018) Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion. eLife 7, e29913 https://doi.org/10.7554/eLife.29913
- Gao S, Guan SA, Fouad AD et al (2018) Excitatory motor neurons are local oscillators for backward locomotion. eLife 7, e29915 https://doi.org/10.7554/eLife.29915
- Shanbhag SR, Singh K and Naresh Singh R (1992) Ultrastructure of the femoral chordotonal organs and their novel synaptic organization in the legs of Drosophila melanogaster Meigen (Diptera : Drosophilidae). Int J Insect Morphol Embryol 21, 311-322 https://doi.org/10.1016/0020-7322(92)90026-J
- Tuthill JC and Wilson RI (2016) Mechanosensation and adaptive motor control in insects. Curr Biol 26, R1022-R1038 https://doi.org/10.1016/j.cub.2016.06.070
- Mendes CS, Bartos I, Akay T, Marka S and Mann RS (2013) Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. eLife 2, e00231 https://doi.org/10.7554/eLife.00231
- Mamiya A, Gurung P and Tuthill JC (2018) Neural coding of leg proprioception in Drosophila. Neuron 100, 636-650 https://doi.org/10.1016/j.neuron.2018.09.009
- Akitake B, Ren Q, Boiko N et al (2015) Coordination and fine motor control depend on Drosophila TRPgamma. Nat Commun 6, 7288 https://doi.org/10.1038/ncomms8288
- Cheng LE, Song W, Looger LL, Jan LY and Jan YN (2010) The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67, 373-380 https://doi.org/10.1016/j.neuron.2010.07.004
- Walker RG, Willingham AT and Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287, 2229-2234 https://doi.org/10.1126/science.287.5461.2229
- Lee E, Sivan-Loukianova E, Eberl DF and Kernan MJ (2008) An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol 18, 1899-1906 https://doi.org/10.1016/j.cub.2008.11.020
- Chan WP, Prete F and Dickinson MH (1998) Visual input to the efferent control system of a fly's "gyroscope". Science 280, 289-292 https://doi.org/10.1126/science.280.5361.289
- Bartussek J and Lehmann FO (2016) Proprioceptive feedback determines visuomotor gain in Drosophila. R Soc Open Sci 3, 150562 https://doi.org/10.1098/rsos.150562
- Fox LE, Soll DR and Wu CF (2006) Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation. J Neurosci 26, 1486-1498 https://doi.org/10.1523/JNEUROSCI.4749-05.2006
- Suster ML and Bate M (2002) Embryonic assembly of a central pattern generator without sensory input. Nature 416, 174-178 https://doi.org/10.1038/416174a
- Hughes CL and Thomas JB (2007) A sensory feedback circuit coordinates muscle activity in Drosophila. Mol Cell Neurosci 35, 383-396 https://doi.org/10.1016/j.mcn.2007.04.001
- Corty MM, Tam J and Grueber WB (2016) Dendritic diversification through transcription factor-mediated suppression of alternative morphologies. Development 143, 1351-1362 https://doi.org/10.1242/dev.130906
- Grueber WB, Jan LY and Jan YN (2002) Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129, 2867-2878 https://doi.org/10.1242/dev.129.12.2867
- Vaadia RD, Li WZ, Voleti V, Singhania A, Hillman EMC and Grueber WB (2019) Characterization of proprioceptive system dynamics in behaving Drosophila larvae using high-speed volumetric microscopy. Curr Biol 29, 935-944 https://doi.org/10.1016/j.cub.2019.01.060
- Schneider-Mizell CM, Gerhard S, Longair M et al (2016) Quantitative neuroanatomy for connectomics in Drosophila. eLife 5, e12059 https://doi.org/10.7554/eLife.12059
- Fushiki A, Zwart MF, Kohsaka H, Fetter RD, Cardona A and Nose A (2016) A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. eLife 5, e13253 https://doi.org/10.7554/eLife.13253
- He L, Gulyanon S, Mihovilovic Skanata M et al (2019) Direction selectivity in Drosophila proprioceptors requires the mechanosensory channel Tmc. Curr Biol 29, 945-956 e943 https://doi.org/10.1016/j.cub.2019.02.025
- Guo Y, Wang Y, Zhang W et al (2016) Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion. Proc Natl Acad Sci U S A 113, 7243-7248 https://doi.org/10.1073/pnas.1606537113
- Suslak TJ, Watson S, Thompson KJ et al (2015) Piezo is essential for amiloride-sensitive stretch-activated mechanotransduction in larval Drosophila dorsal bipolar dendritic sensory neurons. PLoS One 10, e0130969 https://doi.org/10.1371/journal.pone.0130969
- Tuthill JC and Azim E (2018) Proprioception. Curr Biol 28, R194-R203 https://doi.org/10.1016/j.cub.2018.01.064
- Wang F, Belanger E, Cote SL et al (2018) Sensory afferents use different coding strategies for heat and cold. Cell Reports 23, 2001-2013 https://doi.org/10.1016/j.celrep.2018.04.065
- de Nooij JC, Doobar S and Jessell TM (2013) Etv1 inactivation reveals proprioceptor subclasses that reflect the level of NT3 expression in muscle targets. Neuron 77, 1055-1068 https://doi.org/10.1016/j.neuron.2013.01.015
- Levanon D, Bettoun D, Harris-Cerruti C et al (2002) The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 21, 3454-3463 https://doi.org/10.1093/emboj/cdf370
- Abraira VE and Ginty DD (2013) The sensory neurons of touch. Neuron 79, 618-639 https://doi.org/10.1016/j.neuron.2013.07.051
- Usoskin D, Furlan A, Islam S et al (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18, 145-153 https://doi.org/10.1038/nn.3881
- Sharma N, Flaherty K, Lezgiyeva K, Wagner DE, Klein AM and Ginty DD (2020) The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392-398 https://doi.org/10.1038/s41586-019-1900-1
- Oliver KM, Florez-Paz DM, Badea TC, Mentis GZ, Menon V and de Nooij JC (2020) Molecular development of muscle spindle and Golgi tendon organ sensory afferents revealed by single proprioceptor transcriptome analysis. bioRxiv, 2020.04.03.023986
- Woo SH, Lukacs V, de Nooij JC et al (2015) Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci 18, 1756-1762 https://doi.org/10.1038/nn.4162
- Florez-Paz D, Bali KK, Kuner R and Gomis A (2016) A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Sci Rep 6, 25923 https://doi.org/10.1038/srep25923
- Daigle TL, Madisen L, Hage TA et al (2018) A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465-480 https://doi.org/10.1016/j.cell.2018.06.035
- Adrian ED and Zotterman Y (1926) The impulses produced by sensory nerve-endings: part II. The response of a single end-organ. J Physiol 61, 151-171 https://doi.org/10.1113/jphysiol.1926.sp002281
- Hong GS, Lee B, Wee J et al (2016) Tentonin 3/TMEM150c confers distinct mechanosensitive currents in dorsal-root ganglion neurons with proprioceptive function. Neuron 91, 107-118 https://doi.org/10.1016/j.neuron.2016.05.029
- Hillier S, Immink M and Thewlis D (2015) Assessing proprioception: a systematic review of possibilities. Neurorehabil Neural Repair 29, 933-949 https://doi.org/10.1177/1545968315573055
- Chesler AT, Szczot M, Bharucha-Goebel D et al (2016) The role of PIEZO2 in human mechanosensation. N Engl J Med 375, 1355-1364 https://doi.org/10.1056/NEJMoa1602812
- Masingue M, Faure J, Sole G, Stojkovic T and LeonardLouis S (2019) A novel nonsense PIEZO2 mutation in a family with scoliosis and proprioceptive defect. Neuromuscul Disord 29, 75-79 https://doi.org/10.1016/j.nmd.2018.10.005
- Akay T, Tourtellotte WG, Arber S and Jessell TM (2014) Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proc Natl Acad Sci U S A 111, 16877-16882 https://doi.org/10.1073/pnas.1419045111
- Arber S, Ladle DR, Lin JH, Frank E and Jessell TM (2000) ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101, 485-498 https://doi.org/10.1016/S0092-8674(00)80859-4
- Takeoka A and Arber S (2019) Functional local proprioceptive feedback circuits initiate and maintain locomotor recovery after spinal cord injury. Cell Rep 27, 71-85 https://doi.org/10.1016/j.celrep.2019.03.010
- Mathis A, Mamidanna P, Cury KM et al (2018) Deep-LabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci 21, 1281-1289 https://doi.org/10.1038/s41593-018-0209-y
- Wiltschko AB, Tsukahara T, Zeine A et al (2020) Revealing the structure of pharmacobehavioral space through motion sequencing. Nat Neurosci 23, 1433-1443 https://doi.org/10.1038/s41593-020-00706-3