참고문헌
- Afridi, S., Sikandar, M.A., Waseem, M., Nasir, H. and Naseer, A. (2019), "Chemical durability of superabsorbent polymer (SAP) based geopolymer mortars (GPMs)", Constr. Build. Mater., 217, 530-542. https://doi.org/10.1016/j.conbuildmat.2019.05.101.
- Ahmad, S., Barbhuiya, S.A., Elahi, A. and Iqbal, J. (2011), "Effect of Pakistani bentonite on properties of mortar and concrete", Clay Min., 46(1), 85-92. https://doi.org/10.1180/claymin.2011.046.1.85.
- Al-mashhadani, M.M., Canpolat, O., Aygormez, Y., Uysal, M. and Erdem, S. (2018), "Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites", Constr. Build. Mater., 167, 505-513. https://doi.org/10.1016/j.conbuildmat.2018.02.061.
- Ali, N., Canpolat, O., Aygormez, Y. and Al-Mashhadani, M.M. (2020), "Evaluation of the 12-24 mm basalt fibers and boron waste on reinforced metakaolin-based geopolymer", Constr. Build. Mater., 251, 118976. https://doi.org/10.1016/j.conbuildmat.2020.118976.
- Allahverdi, A. and Skvara, F. (2001), "Sulfuric acid attack on hardened paste of geopolymer cements, Part 1. Mechanism of corrosion at relatively high Concentrations", Ceram.-Silikaty, 45(3), 81-88.
- Almusallam, A.A., Khan, F.M., Dulaijan, S.U. and Al-Amoudi, O.S.B. (2003), "Effectiveness of surface coatings in improving concrete durability", Cement Concrete Compos., 25(4-5), 473-481. https://doi.org/10.1016/S0958-9465(02)00087-2.
- A lvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., Font, O., Moreno, T., Diez, S., Vazquez, E. and Barra, M. (2008), "Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-) combustion fly ashes", J. Hazard. Mater., 154(1-3), 175-183. https://doi.org/10.1016/j.jhazmat.2007.10.008.
- Arslan, A.A., Uysal, M., Yilmaz, A., Al-mashhadani, M.M., Canpolat, O., Sahin, F. and Aygormez, Y. (2019), "Influence of wetting-drying curing system on the performance of fiber reinforced metakaolin-based geopolymer composites", Constr. Build. Mater., 225, 909-926. https://doi.org/10.1016/j.conbuildmat.2019.07.235.
- Arunagiri, K., Elanchezhiyan, P., Marimuthu, V., Arunkumar, G. and Rajeswaran, P. (2017), "Mechanical properties of basalt fiber based geopolymer concrete", Int. J. Sci., Eng. Technol. Res. (IJSETR), 6(4), 551.
- ASTM C109/C109M-16a (2016), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens, ASTM International.
- ASTM C348-14 (2014). Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, ASTM International.
- Aygormez, Y. (2021b), "Evaluation of the red mud and quartz sand on reinforced metazeolite-based geopolymer composites", J. Build. Eng., 43, 102528. https://doi.org/10.1016/j.jobe.2021.102528.
- Aygormez, Y. (2021a), "Performance of ambient and freezing-thawing cured metazeolite and slag based geopolymer composites against elevated temperatures", Revista de la Construccion, 20(1), 145-162. http://doi.org/10.7764/rdlc.20.1.145.
- Aygormez, Y., Canpolat, O. and Al-mashhadani, M.M. (2020b), "A survey on one year strength performance of reinforced geopolymer composites", Constr. Build. Mater., 264, 120267. https://doi.org/10.1016/j.conbuildmat.2020.120267.
- Aygormez, Y., Canpolat, O. and Al-mashhadani, M.M. (2020c), "Assessment of geopolymer composites durability at one year age", J. Build. Eng., 32, 101453. https://doi.org/10.1016/j.jobe.2020.101453.
- Aygormez, Y., Canpolat, O., Al-mashhadani, M.M. and Uysal, M. (2020a), "Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites", Constr. Build. Mater., 235, 117502. https://doi.org/10.1016/j.conbuildmat.2019.117502.
- Bakharev, T. (2005), "Resistance of geopolymer materials to acid attack", Cement Concrete Res., 35(4), 658-670. https://doi.org/10.1016/j.cemconres.2004.06.005.
- Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (2003), "Resistance of alkali-activated slag concrete to acid attack", Cement Concrete Res., 33(10), 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X.
- Bassuoni, M.T. and Nehdi, M.L. (2007), "Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction", Cement Concrete Res., 37(7), 1070-1084. https://doi.org/10.1016/j.cemconres.2007.04.014.
- Bouguermouh, K., Bouzidi, N., Mahtout, L., Perez-Villarejo, L. and Martinez-Cartas, M.L. (2017), "Effect of acid attack on microstructure and composition of metakaolin-based geopolymers: The role of alkaline activator", J. Non-Crystal. Solid., 463, 128-137. https://doi.org/10.1016/j.jnoncrysol.2017.03.011.
- Buchwald, A., Hohmann, M., Posern, K. and Brendler, E. (2009), "The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders", Appl. Clay Sci., 46(3), 300-304. https://doi.org/10.1016/j.clay.2009.08.026.
- Calabria-Holley, J., Papatzani, S., Naden, B., Mitchels, J. and Paine, K. (2017), "Tailored montmorillonite nanoparticles and their behaviour in the alkaline cement environment", Appl. Clay Sci., 143, 67-75. https://doi.org/10.1016/j.clay.2017.03.005.
- Celik, A., Yilmaz, K., Canpolat, O., Al-Mashhadani, M.M., Aygormez, Y. and Uysal, M. (2018), "High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers", Constr. Build. Mater., 187, 1190-1203. https://doi.org/10.1016/j.conbuildmat.2018.08.062.
- Chang, J.J., Yeih, W. and Hung, C.C. (2005), "Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes", Cement Concrete Compos., 27(1), 85-91. https://doi.org/10.1016/j.cemconcomp.2003.12.001.
- Chindaprasirt, P., Rattanasak, U. and Taebuanhuad, S. (2013), "Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer", Mater. Struct./Materiaux et Constr., 46(3), 375-381. https://doi.org/10.1617/s11527-012-9907-1.
- Davidovits, J. (1994), "Properties of geopolymer cements", First International Conference on Alkaline Cements and Concretes, Vol. 1, Kiev State Technical University, Ukraine.
- Degirmenci, F.N. (2017), "Effect of sodium silicate to sodium hydroxide ratios on durability of geopolymer mortars containing natural and artificial pozzolans", Ceram.-Silikaty, 61(4), 340-350. https://doi.org/10.13168/cs.2017.0033.
- Degirmenci, F.N. (2018), "Freeze-thaw and fire resistance of geopolymer mortar based on natural and waste pozzolans", Ceram.-Silikaty, 62(1) 41-49. https://doi.org/10.13168/cs.2017.0043.
- Dias, D.P. and Thaumaturgo, C. (2005), "Fracture toughness of geopolymeric concretes reinforced with basalt fibers", Cement Concrete Compos., 27(1), 49-54. https://doi.org/10.1016/j.cemconcomp.2004.02.044.
- Djobo, J.N.Y., Elimbi, A., Tchakoute, H.K. and Kumar, S. (2016), "Mechanical properties and durability of volcanic ash based geopolymer mortars", Constr. Build. Mater., 124, 606-614. https://doi.org/10.1016/j.conbuildmat.2016.07.141.
- Douiri, H., Louati, S., Baklouti, S., Arous, M. and Fakhfakh, Z. (2016), "Enhanced dielectric performance of metakaolin-H3PO4 geopolymers", Mater. Lett., 164, 299-302. https://doi.org/10.1016/j.matlet.2015.10.172.
- Duxson, P. and Provis, J.L. (2008), "Designing precursors for geopolymer cements", J. Am. Ceram. Soc., 91(12), 3864-3869. https://doi.org/10.1111/j.1551-2916.2008.02787.x.
- Duxson, P., Lukey, G.C. and van Deventer, J.S. (2007), "Physical evolution of Na-geopolymer derived from metakaolin up to 1000 C", J. Mater. Sci., 42(9), 3044-3054. https://doi.org/10.1007/s10853-006-0535-4.
- Duxson, P.S.W.M., Mallicoat, S.W., Lukey, G.C., Kriven, W.M. and van Deventer, J.S. (2007), "The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers", Coll. Surf. A: Physicochem. Eng. Aspect., 292(1), 8-20. https://doi.org/10.1016/j.colsurfa.2006.05.044.
- En, B.S. (2005), "Methods of testing cement-Part 1: Determination of strength", European Committee for Standardization, 169, Brussels, Belgium,.
- Flower, D.J.M. and Sanjayan, J.G. (2007), "Green house gas emissions due to concrete manufacture", Int. J. Life Cycle Assess., 12(5), 282. https://doi.org/10.1065/lca2007.05.327.
- Frost, J.P. and Armstrong, D.J. (1994), "Concrete and silage effluent-a cyclical exposure method for accelerated corrosion testing", Farm Build. Prog., 116, 27-30.
- Hamdi, N., Messaoud, I.B. and Srasra, E. (2019), "Production of geopolymer binders using clay minerals and industrial wastes", Comptes Rendus Chimie, 22(2-3), 220-226. https://doi.org/10.1016/j.crci.2018.11.010.
- Heah, C., Kamarudin, H., Al Bakri, A.M., Binhussain, M., Luqman, M., Nizar, I.K., Ruzaidi, C. and Liew, Y. (2011), "Effect of curing profile on kaolin-based geopolymers", Phys. Procedia, 22, 305-311. https://doi.org/10.1016/j.phpro.2011.11.048.
- Izzat, A.M., Al Bakri, A.M.M., Kamarudin, H., Moga, L.M., Ruzaidi, G.C.M., Faheem, M.T.M. and Sandu, A.V. (2013), "Microstructural analysis of geopolymer and ordinary Portland cement mortar exposed to sulfuric acid", Mater. Plast, 50(3), 171-174.
- Kani, E.N. and Allahverdi, A. (2009), "Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan", J. Mater. Sci., 44(12), 3088-3097. https://doi.org/10.1007/s10853-009-3411-1.
- Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O. and Nis, A. (2018), "Mechanical and durability properties of fly ash and slag based geopolymer concrete", Adv. Concrete Constr., 6(4), 345-362. http://doi.org/10.12989/acc.2018.6.4.345.
- Li, Z., Zhang, Y. and Zhou, X. (2005), "Short fiber reinforced geopolymer composites manufactured by extrusion", J. Mater. Civil Eng., 17(6), 624-631. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(624).
- McGuire E.M., Provis J.L., Duxson P. and Crawford, R. (2011), "Geopolymer concrete: is there an alternative and viable technology in the concrete sector which reduces carbon emissions?", Proceedings of the Concrete, Concrete Institute of Australia, Perth, Australia.
- Mirza, J., Riaz, M., Naseer, A., Rehman, F., Khan, A.N. and Ali, Q. (2009), "Pakistani bentonite in mortars and concrete as low cost construction material", Appl. Clay Sci., 45(4), 220-226. https://doi.org/10.1016/j.clay.2009.06.011.
- Mobili, A., Belli, A., Giosue, C., Bellezze, T. and Tittarelli, F. (2016), "Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class", Cement Concrete Res., 88, 198-210. https://doi.org/10.1016/j.cemconres.2016.07.004.
- O zkan, S. and Demir, F. (2020), "The hybrid effects of PVA fiber and basalt fiber on mechanical performance of cost effective hybrid cementitious composites", Constr. Build. Mater., 263, 120564. https://doi.org/10.1016/j.conbuildmat.2020.120564.
- Palomo, A., Grutzeck, M. and Blanco, M. (1999), "Alkali-activated fly ashes: a cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9.
- Paluszkiewicz, C., Holtzer, M. and Bobrowski, A. (2008), "FTIR analysis of bentonite in moulding sands", J. Molecul. Struct., 880(1-3), 109-114. https://doi.org/10.1016/j.molstruc.2008.01.028.
- Perera, D., Uchida, O., Vance, E. and Finnie, K. (2007), "Influence of curing schedule on the integrity of geopolymers", J. Mater. Sci., 42(9), 3099-3106. https://doi.org/10.1007/s10853-006-0533-6.
- Puertas, F., Amat, T., Fernandez-Jimenez, A. and Vazquez, T. (2003), "Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres", Cement Concrete Compos., 33(12), 2031-2036. https://doi.org/10.1016/S0008-8846(03)00222-9.
- Puertas, F., Martinez-Ramirez, S., Alonso, S. and Vazquez, T. (2000), "Alkali-activated fly ash/slag cements: strength behaviour and hydration products", Cement Concrete Compos., 30(10), 1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2.
- Rajamane, N.P., Nataraja, M.C., Lakshmanan, N., Dattatreya, J.K. and Sabitha, D. (2012), "Sulphuric acid resistant ecofriendly concrete from geopolymerisation of blast furnace slag", Ind. J. Eng. Mater. Sci., 19, 357-367.
- Rashad, A.M. (2013), "Metakaolin as cementitious material: History, scours, production and composition-A comprehensive overview", Constr. Build. Mater., 41, 303-318. https://doi.org/10.1016/j.conbuildmat.2012.12.001.
- Rovnanik, P. (2010), "Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer", Constr. Build. Mater., 24(7), 1176-1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023.
- Sakizci, M., Erdogan Alver, B. and Yorukogullari, E. (2009), "Thermal behavior and immersion heats of selected clays from Turkey", J. Therm. Anal. Calorimet., 98(2), 429-436. https://doi.org/10.1007/s10973-009-0294-y.
- Sata, V., Sathonsaowaphak, A. and Chindaprasirt, P. (2012), "Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack", Cement Concrete Compos., 34(5), 700-708. https://doi.org/10.1016/j.cemconcomp.2012.01.010.
- Seiffarth, T., Hohmann, M., Posern, K. and Kaps, C. (2013), "Effect of thermal pre-treatment conditions of common clays on the performance of clay-based geopolymeric binders", Appl. Clay Sci., 73, 35-41. https://doi.org/10.1016/j.clay.2012.09.010.
- Shinde, B. and Kadam, K. (2016), "Effect of addition of ordinary portland cement on geopolymer concrete with ambient curing", International Journal of Modern Trends in Engineering and Research, Amravati, India.
- Shinde, B. and Kadam, K. (2016), "Properties of flyash based geopolymer mortar with ambient curing", Int. J. Eng. Res., 5, 203-206.
- Song, X.J., Marosszeky, M., Brungs, M. and Munn, R. (2005), "Durability of fly ash based geopolymer concrete against sulphuric acid attack", 10 DBMC International Conference on Durability of Building Materials and Components, Lyon, France.
- Thokchom, S. (2014), "Fly ash geopolymer pastes in sulphuric acid", Int. J. Eng. Innov. Res., 3(6), 943-947.
- Thokchom, S., Ghosh, P. and Ghosh, S. (2009), "Resistance of fly ash based geopolymer mortars in sulfuric acid", ARPN J. Eng. Appl. Sci., 4(1), 65-70.
- Uysal, M., Al-mashhadani, M.M., Aygormez, Y. and Canpolat, O. (2018), "Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars", Constr. Build. Mater., 176, 271-282. https://doi.org/10.1016/j.conbuildmat.2018.05.034.
- Vafaei, M., Allahverdi, A., Dong, P. and Bassim, N. (2018), "Acid attack on geopolymer cement mortar based on waste-glass powder and calcium aluminate cement at mild concentration", Constr. Build. Mater., 193, 363-372. https://doi.org/10.1016/j.conbuildmat.2018.10.203.
- Van Deventer, J.S., Provis, J.L. and Duxson, P. (2012), "Technical and commercial progress in the adoption of geopolymer cement", Min. Eng., 29, 89-104. https://doi.org/10.1016/j.mineng.2011.09.009.
- Vijai, K., Kumutha, R. and Vishnuram, B. (2010), "Effect of types of curing on strength of geopolymer concrete", Int. J. Phys. Sci., 5(9), 1419-1423. https://doi.org/10.5897/IJPS.9000200.
- Wang, H., Li, H. and Yan, F. (2005), "Synthesis and mechanical properties of metakaolinite-based geopolymer", Coll. Surf. A: Physicochem. Eng. Aspect., 268(1-3), 1-6. https://doi.org/10.1016/j.colsurfa.2005.01.016.
- Xu, H. and Van Deventer, J.S.J. (2000), "The geopolymerisation of alumino-silicate minerals", Int. J Min. Proc., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5.
- Xu, L., Ye, W.M., Chen, B., Chen, Y.G. and Cui, Y.J. (2016), "Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials", Eng. Geol., 213, 46-54. https://doi.org/10.1016/j.enggeo.2016.08.015.
- Yaman, I.O., Inci, G., Yesiller, N. and Aktan, H.M. (2001), "Ultrasonic pulse velocity in concrete using direct and indirect transmission", ACI Mater. J., 98(6), 450.
- Yunsheng, Z., Sun, W., Li, Z., Zhou, X., Eddie, and Chau, C., (2008), "Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber", Constr. Build. Mater., 22, 370-383. https://doi.org/10.1016/j.conbuildmat.2006.08.006.