DOI QR코드

DOI QR Code

Sulfuric acid effect and application of freezing-thawing curing on long fiber reinforced metabentonite and slag-based geopolymer composites

  • Aygormez, Yurdakul (Civil Engineering Department, Yildiz Technical University, Davutpasa Campus)
  • Received : 2020.02.09
  • Accepted : 2021.07.06
  • Published : 2021.08.25

Abstract

In this study, different types of metabentonite (MB) and slag (S)-based geopolymer were produced based on origin, polyvinyl alcohol (PVA) and basalt (B) fiber at different percentages of 0.2%, 0.4%, and 0.6%. A total of 7 series were produced. Two steps of curing method were applied for the samples, the first step was at room temperature from day 1-7, and the second step freezing-thawing from 8-28 days. Thus, the applicability of a curing method that used less energy instead of heat curing was investigated. Due to the freezing-thawing curing, the continuation of geopolymerization reactions was ensured and a compact structure was created. The produced samples were subjected to 10% sulfuric acid effect for 3 months after the 28th day. Compressive strength, flexural strength, ultrasonic pulse velocity (UPV), and weight losses due to acid effects were found. Despite the decrease in mechanical properties after the acid effect, the geopolymer products didn't experience easy dispersal because they had strong aluminosilicate bonds, crystalline phase formation, morphology, and lower calcium content that provided high stability. Also, SEM, XRD, FT-IR, and TGA-DTA analyzes and visual inspection resulting from the acid effect were examined.

Keywords

References

  1. Afridi, S., Sikandar, M.A., Waseem, M., Nasir, H. and Naseer, A. (2019), "Chemical durability of superabsorbent polymer (SAP) based geopolymer mortars (GPMs)", Constr. Build. Mater., 217, 530-542. https://doi.org/10.1016/j.conbuildmat.2019.05.101.
  2. Ahmad, S., Barbhuiya, S.A., Elahi, A. and Iqbal, J. (2011), "Effect of Pakistani bentonite on properties of mortar and concrete", Clay Min., 46(1), 85-92. https://doi.org/10.1180/claymin.2011.046.1.85.
  3. Al-mashhadani, M.M., Canpolat, O., Aygormez, Y., Uysal, M. and Erdem, S. (2018), "Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites", Constr. Build. Mater., 167, 505-513. https://doi.org/10.1016/j.conbuildmat.2018.02.061.
  4. Ali, N., Canpolat, O., Aygormez, Y. and Al-Mashhadani, M.M. (2020), "Evaluation of the 12-24 mm basalt fibers and boron waste on reinforced metakaolin-based geopolymer", Constr. Build. Mater., 251, 118976. https://doi.org/10.1016/j.conbuildmat.2020.118976.
  5. Allahverdi, A. and Skvara, F. (2001), "Sulfuric acid attack on hardened paste of geopolymer cements, Part 1. Mechanism of corrosion at relatively high Concentrations", Ceram.-Silikaty, 45(3), 81-88.
  6. Almusallam, A.A., Khan, F.M., Dulaijan, S.U. and Al-Amoudi, O.S.B. (2003), "Effectiveness of surface coatings in improving concrete durability", Cement Concrete Compos., 25(4-5), 473-481. https://doi.org/10.1016/S0958-9465(02)00087-2.
  7. A lvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., Font, O., Moreno, T., Diez, S., Vazquez, E. and Barra, M. (2008), "Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-) combustion fly ashes", J. Hazard. Mater., 154(1-3), 175-183. https://doi.org/10.1016/j.jhazmat.2007.10.008.
  8. Arslan, A.A., Uysal, M., Yilmaz, A., Al-mashhadani, M.M., Canpolat, O., Sahin, F. and Aygormez, Y. (2019), "Influence of wetting-drying curing system on the performance of fiber reinforced metakaolin-based geopolymer composites", Constr. Build. Mater., 225, 909-926. https://doi.org/10.1016/j.conbuildmat.2019.07.235.
  9. Arunagiri, K., Elanchezhiyan, P., Marimuthu, V., Arunkumar, G. and Rajeswaran, P. (2017), "Mechanical properties of basalt fiber based geopolymer concrete", Int. J. Sci., Eng. Technol. Res. (IJSETR), 6(4), 551.
  10. ASTM C109/C109M-16a (2016), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens, ASTM International.
  11. ASTM C348-14 (2014). Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, ASTM International.
  12. Aygormez, Y. (2021b), "Evaluation of the red mud and quartz sand on reinforced metazeolite-based geopolymer composites", J. Build. Eng., 43, 102528. https://doi.org/10.1016/j.jobe.2021.102528.
  13. Aygormez, Y. (2021a), "Performance of ambient and freezing-thawing cured metazeolite and slag based geopolymer composites against elevated temperatures", Revista de la Construccion, 20(1), 145-162. http://doi.org/10.7764/rdlc.20.1.145.
  14. Aygormez, Y., Canpolat, O. and Al-mashhadani, M.M. (2020b), "A survey on one year strength performance of reinforced geopolymer composites", Constr. Build. Mater., 264, 120267. https://doi.org/10.1016/j.conbuildmat.2020.120267.
  15. Aygormez, Y., Canpolat, O. and Al-mashhadani, M.M. (2020c), "Assessment of geopolymer composites durability at one year age", J. Build. Eng., 32, 101453. https://doi.org/10.1016/j.jobe.2020.101453.
  16. Aygormez, Y., Canpolat, O., Al-mashhadani, M.M. and Uysal, M. (2020a), "Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites", Constr. Build. Mater., 235, 117502. https://doi.org/10.1016/j.conbuildmat.2019.117502.
  17. Bakharev, T. (2005), "Resistance of geopolymer materials to acid attack", Cement Concrete Res., 35(4), 658-670. https://doi.org/10.1016/j.cemconres.2004.06.005.
  18. Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (2003), "Resistance of alkali-activated slag concrete to acid attack", Cement Concrete Res., 33(10), 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X.
  19. Bassuoni, M.T. and Nehdi, M.L. (2007), "Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction", Cement Concrete Res., 37(7), 1070-1084. https://doi.org/10.1016/j.cemconres.2007.04.014.
  20. Bouguermouh, K., Bouzidi, N., Mahtout, L., Perez-Villarejo, L. and Martinez-Cartas, M.L. (2017), "Effect of acid attack on microstructure and composition of metakaolin-based geopolymers: The role of alkaline activator", J. Non-Crystal. Solid., 463, 128-137. https://doi.org/10.1016/j.jnoncrysol.2017.03.011.
  21. Buchwald, A., Hohmann, M., Posern, K. and Brendler, E. (2009), "The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders", Appl. Clay Sci., 46(3), 300-304. https://doi.org/10.1016/j.clay.2009.08.026.
  22. Calabria-Holley, J., Papatzani, S., Naden, B., Mitchels, J. and Paine, K. (2017), "Tailored montmorillonite nanoparticles and their behaviour in the alkaline cement environment", Appl. Clay Sci., 143, 67-75. https://doi.org/10.1016/j.clay.2017.03.005.
  23. Celik, A., Yilmaz, K., Canpolat, O., Al-Mashhadani, M.M., Aygormez, Y. and Uysal, M. (2018), "High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers", Constr. Build. Mater., 187, 1190-1203. https://doi.org/10.1016/j.conbuildmat.2018.08.062.
  24. Chang, J.J., Yeih, W. and Hung, C.C. (2005), "Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes", Cement Concrete Compos., 27(1), 85-91. https://doi.org/10.1016/j.cemconcomp.2003.12.001.
  25. Chindaprasirt, P., Rattanasak, U. and Taebuanhuad, S. (2013), "Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer", Mater. Struct./Materiaux et Constr., 46(3), 375-381. https://doi.org/10.1617/s11527-012-9907-1.
  26. Davidovits, J. (1994), "Properties of geopolymer cements", First International Conference on Alkaline Cements and Concretes, Vol. 1, Kiev State Technical University, Ukraine.
  27. Degirmenci, F.N. (2017), "Effect of sodium silicate to sodium hydroxide ratios on durability of geopolymer mortars containing natural and artificial pozzolans", Ceram.-Silikaty, 61(4), 340-350. https://doi.org/10.13168/cs.2017.0033.
  28. Degirmenci, F.N. (2018), "Freeze-thaw and fire resistance of geopolymer mortar based on natural and waste pozzolans", Ceram.-Silikaty, 62(1) 41-49. https://doi.org/10.13168/cs.2017.0043.
  29. Dias, D.P. and Thaumaturgo, C. (2005), "Fracture toughness of geopolymeric concretes reinforced with basalt fibers", Cement Concrete Compos., 27(1), 49-54. https://doi.org/10.1016/j.cemconcomp.2004.02.044.
  30. Djobo, J.N.Y., Elimbi, A., Tchakoute, H.K. and Kumar, S. (2016), "Mechanical properties and durability of volcanic ash based geopolymer mortars", Constr. Build. Mater., 124, 606-614. https://doi.org/10.1016/j.conbuildmat.2016.07.141.
  31. Douiri, H., Louati, S., Baklouti, S., Arous, M. and Fakhfakh, Z. (2016), "Enhanced dielectric performance of metakaolin-H3PO4 geopolymers", Mater. Lett., 164, 299-302. https://doi.org/10.1016/j.matlet.2015.10.172.
  32. Duxson, P. and Provis, J.L. (2008), "Designing precursors for geopolymer cements", J. Am. Ceram. Soc., 91(12), 3864-3869. https://doi.org/10.1111/j.1551-2916.2008.02787.x.
  33. Duxson, P., Lukey, G.C. and van Deventer, J.S. (2007), "Physical evolution of Na-geopolymer derived from metakaolin up to 1000 C", J. Mater. Sci., 42(9), 3044-3054. https://doi.org/10.1007/s10853-006-0535-4.
  34. Duxson, P.S.W.M., Mallicoat, S.W., Lukey, G.C., Kriven, W.M. and van Deventer, J.S. (2007), "The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers", Coll. Surf. A: Physicochem. Eng. Aspect., 292(1), 8-20. https://doi.org/10.1016/j.colsurfa.2006.05.044.
  35. En, B.S. (2005), "Methods of testing cement-Part 1: Determination of strength", European Committee for Standardization, 169, Brussels, Belgium,.
  36. Flower, D.J.M. and Sanjayan, J.G. (2007), "Green house gas emissions due to concrete manufacture", Int. J. Life Cycle Assess., 12(5), 282. https://doi.org/10.1065/lca2007.05.327.
  37. Frost, J.P. and Armstrong, D.J. (1994), "Concrete and silage effluent-a cyclical exposure method for accelerated corrosion testing", Farm Build. Prog., 116, 27-30.
  38. Hamdi, N., Messaoud, I.B. and Srasra, E. (2019), "Production of geopolymer binders using clay minerals and industrial wastes", Comptes Rendus Chimie, 22(2-3), 220-226. https://doi.org/10.1016/j.crci.2018.11.010.
  39. Heah, C., Kamarudin, H., Al Bakri, A.M., Binhussain, M., Luqman, M., Nizar, I.K., Ruzaidi, C. and Liew, Y. (2011), "Effect of curing profile on kaolin-based geopolymers", Phys. Procedia, 22, 305-311. https://doi.org/10.1016/j.phpro.2011.11.048.
  40. Izzat, A.M., Al Bakri, A.M.M., Kamarudin, H., Moga, L.M., Ruzaidi, G.C.M., Faheem, M.T.M. and Sandu, A.V. (2013), "Microstructural analysis of geopolymer and ordinary Portland cement mortar exposed to sulfuric acid", Mater. Plast, 50(3), 171-174.
  41. Kani, E.N. and Allahverdi, A. (2009), "Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan", J. Mater. Sci., 44(12), 3088-3097. https://doi.org/10.1007/s10853-009-3411-1.
  42. Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O. and Nis, A. (2018), "Mechanical and durability properties of fly ash and slag based geopolymer concrete", Adv. Concrete Constr., 6(4), 345-362. http://doi.org/10.12989/acc.2018.6.4.345.
  43. Li, Z., Zhang, Y. and Zhou, X. (2005), "Short fiber reinforced geopolymer composites manufactured by extrusion", J. Mater. Civil Eng., 17(6), 624-631. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(624).
  44. McGuire E.M., Provis J.L., Duxson P. and Crawford, R. (2011), "Geopolymer concrete: is there an alternative and viable technology in the concrete sector which reduces carbon emissions?", Proceedings of the Concrete, Concrete Institute of Australia, Perth, Australia.
  45. Mirza, J., Riaz, M., Naseer, A., Rehman, F., Khan, A.N. and Ali, Q. (2009), "Pakistani bentonite in mortars and concrete as low cost construction material", Appl. Clay Sci., 45(4), 220-226. https://doi.org/10.1016/j.clay.2009.06.011.
  46. Mobili, A., Belli, A., Giosue, C., Bellezze, T. and Tittarelli, F. (2016), "Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class", Cement Concrete Res., 88, 198-210. https://doi.org/10.1016/j.cemconres.2016.07.004.
  47. O zkan, S. and Demir, F. (2020), "The hybrid effects of PVA fiber and basalt fiber on mechanical performance of cost effective hybrid cementitious composites", Constr. Build. Mater., 263, 120564. https://doi.org/10.1016/j.conbuildmat.2020.120564.
  48. Palomo, A., Grutzeck, M. and Blanco, M. (1999), "Alkali-activated fly ashes: a cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9.
  49. Paluszkiewicz, C., Holtzer, M. and Bobrowski, A. (2008), "FTIR analysis of bentonite in moulding sands", J. Molecul. Struct., 880(1-3), 109-114. https://doi.org/10.1016/j.molstruc.2008.01.028.
  50. Perera, D., Uchida, O., Vance, E. and Finnie, K. (2007), "Influence of curing schedule on the integrity of geopolymers", J. Mater. Sci., 42(9), 3099-3106. https://doi.org/10.1007/s10853-006-0533-6.
  51. Puertas, F., Amat, T., Fernandez-Jimenez, A. and Vazquez, T. (2003), "Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres", Cement Concrete Compos., 33(12), 2031-2036. https://doi.org/10.1016/S0008-8846(03)00222-9.
  52. Puertas, F., Martinez-Ramirez, S., Alonso, S. and Vazquez, T. (2000), "Alkali-activated fly ash/slag cements: strength behaviour and hydration products", Cement Concrete Compos., 30(10), 1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2.
  53. Rajamane, N.P., Nataraja, M.C., Lakshmanan, N., Dattatreya, J.K. and Sabitha, D. (2012), "Sulphuric acid resistant ecofriendly concrete from geopolymerisation of blast furnace slag", Ind. J. Eng. Mater. Sci., 19, 357-367.
  54. Rashad, A.M. (2013), "Metakaolin as cementitious material: History, scours, production and composition-A comprehensive overview", Constr. Build. Mater., 41, 303-318. https://doi.org/10.1016/j.conbuildmat.2012.12.001.
  55. Rovnanik, P. (2010), "Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer", Constr. Build. Mater., 24(7), 1176-1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023.
  56. Sakizci, M., Erdogan Alver, B. and Yorukogullari, E. (2009), "Thermal behavior and immersion heats of selected clays from Turkey", J. Therm. Anal. Calorimet., 98(2), 429-436. https://doi.org/10.1007/s10973-009-0294-y.
  57. Sata, V., Sathonsaowaphak, A. and Chindaprasirt, P. (2012), "Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack", Cement Concrete Compos., 34(5), 700-708. https://doi.org/10.1016/j.cemconcomp.2012.01.010.
  58. Seiffarth, T., Hohmann, M., Posern, K. and Kaps, C. (2013), "Effect of thermal pre-treatment conditions of common clays on the performance of clay-based geopolymeric binders", Appl. Clay Sci., 73, 35-41. https://doi.org/10.1016/j.clay.2012.09.010.
  59. Shinde, B. and Kadam, K. (2016), "Effect of addition of ordinary portland cement on geopolymer concrete with ambient curing", International Journal of Modern Trends in Engineering and Research, Amravati, India.
  60. Shinde, B. and Kadam, K. (2016), "Properties of flyash based geopolymer mortar with ambient curing", Int. J. Eng. Res., 5, 203-206.
  61. Song, X.J., Marosszeky, M., Brungs, M. and Munn, R. (2005), "Durability of fly ash based geopolymer concrete against sulphuric acid attack", 10 DBMC International Conference on Durability of Building Materials and Components, Lyon, France.
  62. Thokchom, S. (2014), "Fly ash geopolymer pastes in sulphuric acid", Int. J. Eng. Innov. Res., 3(6), 943-947.
  63. Thokchom, S., Ghosh, P. and Ghosh, S. (2009), "Resistance of fly ash based geopolymer mortars in sulfuric acid", ARPN J. Eng. Appl. Sci., 4(1), 65-70.
  64. Uysal, M., Al-mashhadani, M.M., Aygormez, Y. and Canpolat, O. (2018), "Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars", Constr. Build. Mater., 176, 271-282. https://doi.org/10.1016/j.conbuildmat.2018.05.034.
  65. Vafaei, M., Allahverdi, A., Dong, P. and Bassim, N. (2018), "Acid attack on geopolymer cement mortar based on waste-glass powder and calcium aluminate cement at mild concentration", Constr. Build. Mater., 193, 363-372. https://doi.org/10.1016/j.conbuildmat.2018.10.203.
  66. Van Deventer, J.S., Provis, J.L. and Duxson, P. (2012), "Technical and commercial progress in the adoption of geopolymer cement", Min. Eng., 29, 89-104. https://doi.org/10.1016/j.mineng.2011.09.009.
  67. Vijai, K., Kumutha, R. and Vishnuram, B. (2010), "Effect of types of curing on strength of geopolymer concrete", Int. J. Phys. Sci., 5(9), 1419-1423. https://doi.org/10.5897/IJPS.9000200.
  68. Wang, H., Li, H. and Yan, F. (2005), "Synthesis and mechanical properties of metakaolinite-based geopolymer", Coll. Surf. A: Physicochem. Eng. Aspect., 268(1-3), 1-6. https://doi.org/10.1016/j.colsurfa.2005.01.016.
  69. Xu, H. and Van Deventer, J.S.J. (2000), "The geopolymerisation of alumino-silicate minerals", Int. J Min. Proc., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5.
  70. Xu, L., Ye, W.M., Chen, B., Chen, Y.G. and Cui, Y.J. (2016), "Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials", Eng. Geol., 213, 46-54. https://doi.org/10.1016/j.enggeo.2016.08.015.
  71. Yaman, I.O., Inci, G., Yesiller, N. and Aktan, H.M. (2001), "Ultrasonic pulse velocity in concrete using direct and indirect transmission", ACI Mater. J., 98(6), 450.
  72. Yunsheng, Z., Sun, W., Li, Z., Zhou, X., Eddie, and Chau, C., (2008), "Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber", Constr. Build. Mater., 22, 370-383. https://doi.org/10.1016/j.conbuildmat.2006.08.006.