References
- Abdeldjalil, B., Djaffar, S.B. and Kheireddine, A. (2019), "Influence of tire rubber aggregates on the physico-mechanical properties of cement mortars", Int. J. Sust. Build. Tech. Urban Develop., 10(1), 2-14. https://doi.org/10.22712/susb.20190002.
- Benaissa, A., Morlier, P. and Viguier, C. (2000), "Microstructure du Beton de Sable", Cement. Concret. Res., 30(5), 703-711. https://doi.org/10.1016/0008-8846(93)90017-4.
- Benbellil, B., Kebdani, S., Mitiche Kettab, R. and Benbouras, M.A. (2018), "Comparative modelling of seismic performance of l-shaped reinforced concrete shear walls", Urban. Arch. Constr., 10(1), 29-46.
- Benouadah, A., Beddar, M. and Meddah, A. (2017), "Physical And mechanical behaviour of a roller compacted concrete reinforced with polypropylene fiber", J. Fund. Appl. Sci., 9(2), 623-635. https://doi.org/10.4314/jfas.v9i2.1.
- Benzahar, H.H. (2019), "Theoretical and numerical analysis of stress and stress intensity factor in bi-material", Int. J. Struct. Integ., 10(1), 76-84. https://doi.org/10.1108/IJSI-08-2018-0048.
- Bravo, M. and Brito, J. (2012), "Concrete made with used tyre aggregate: durability related performance", J. Clean. Prod., 25, 42-50. https://doi.org/10.1016/j.jclepro.2011.11.066.
- Festa, J. (1998), Nouveau Guide du Beton et de Ses Constituants, Eyrolles Huitieme Edition, Paris, France.
- Hilal, N.N. (2017), "Hardened properties of self-compacting concrete with different crumb rubber size and content", Int. J. Sust. Built Envir., 6(1), 191-206. https://doi.org/10.1016/j.ijsbe.2017.03.001.
- Hosseinpour, F. and Abbasnia, R. (2014), "Experimental investigation of the stress-strain behavior of FRP confined concrete prisms", Adv. Concret Constr., 2(3), 177. https://doi.org/10.12989/acc.2014.2.3.177.
- Karakurt, C. (2015), "Microstructure properties of waste tire rubber composites: An overview", J. Mater. Cycl. Waste Manage., 17, 422-433. https://doi.org/10.1007/s10163-014-0263-9.
- Kettab, R., Bali, A. and Fleureau, J.M. (2004), "Modified bituminous concrete", International Conference Sustainable Waste Management and Recycling Challenge and Opportunities, Londres.
- Kettab, R., Bali, A. and Alliche, A. (2007), "Rubber modified sand concrete for waste management", Int. J. Nucl. Energ. Sci. Technol., 3(1), 63-75. https://doi.org/10.1504/IJNEST.2007.012441.
- Khaloo, A.R., Dehestani, P. and Rahmatabadi P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", J. Wast. Manag. 28, 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.
- Kromoser, B. and Huber, P. (2016), "Pneumatic formwork systems in structural engineering", Adv. Mater. Sci. Eng., 2016, Article ID 4724036. https://doi.org/10.1155/2016/4724036.
- Lyacia, S., Ratiba, M.K. and Djaffar, S.B. (2019), "Evaluation of the workability, marshall parameters, and the stiffness modulus of rubber modified bituminous concrete", Int. J. Sust. Build. Tech. Urban Develop., 10(2), 43-55. https://doi.org/10.22712/susb.20190006.
- Marzec, I., Bobinski, J. and Tejchman, J. (2007), "Simulations of spacing of localized zones in reinforced concrete beams using elasto-plasticity and damage mechanics with non-local softening", Comput. Concrete, 4(5), 377-402. https://doi.org/10.12989/cac.2007.4.5.377.
- Meddah, A., Bensaci, H. and Bali, A. (2017), "Study of effects of mechanical and chemical treatment of rubber on the performance of rubberized roller-compacted concrete pavement", Innov. Infrastr. Solut., 2(1), 17. https://doi.org/10.1007/s41062-017-0068-5.
- Sablocrete (1994), Beton de Sable, Presse de L'Ecole Nationale des Ponts Et Chaussees, Paris, France.
- Segre, N. and Joekes, I. (2000), "Use of tire rubber particles as addition to cement paste", J. Cement Concret Res., 30, 1421-1425. https://doi.org/10.1016/j.wasman.
- Tayeh, A.I. (2013), "Effect of replacement of sand by waste fine crumb rubber on concrete beam subject to impact load: experiment and simulation", Civil Eng. Res., 3(13), 165-172.
- Topcu, I.B. and Bilir, T. (2009), "Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete", Mater. Des., 30(8), 3056-3065. https://doi.org/10.1016/j.matdes.2008.12.011.
- Xu, J., Fu, Z., Han, Q., Lacidogna, G. and Carpinteri, A. (2018), "Micro-cracking monitoring and fracture evaluation for crumb rubber concrete based on acoustic emission techniques", Struct. Hlth. Monit., 17(4), 1-13. https://doi.org/10.1177/1475921717730538.
- Yahiaoui, W., Kenai, S., Menadi, B. and Kadri, E. (2017), "Durability of self compacted concrete containing slag in hot climate", Adv. Concrete Constr., 5(3), 271-288. https://doi.org/10.12989/acc.2017.5.3.271.
- Youssf, O., Mills, J.E. and Hassanli, R. (2016), "Assessment of the mechanical performance of crumb rubber concrete", Constr. Build. Mater., 125, 175-183. https://doi.org/10.1016/j.conbuildmat.2016.08.040.
- Yung, W.H., Yung, L.C and Hua, L.H (2013), "A study of the durability properties of waste tire rubber applied to self-compacting concrete", Constr. Build. Mater, 41, 665-672. https://doi.org/10.1016/j.conbuildmat.2012.11.019.