DOI QR코드

DOI QR Code

Recent Progress in Magneto-Mechano-Electric Generators

자기-기계-전기 변환소자를 이용한 에너지 하베스팅 기술

  • Hwang, Geon-Tae (Department of Materials Science and Engineering, Pukyong National University) ;
  • Ryu, Jungho (School of Materials Science & Engineering, Yeungnam University) ;
  • Yoon, Woon-Ha (Department of Functional Ceramics, Korea Institute of Materials Science (KIMS))
  • 황건태 (부경대학교 재료공학과) ;
  • 류정호 (영남대학교 신소재공학부) ;
  • 윤운하 (한국재료연구원 기능세라믹연구실)
  • Received : 2021.07.26
  • Accepted : 2021.08.02
  • Published : 2021.09.01

Abstract

The internet of things (IoT) technology is a key component for the advent of 4th industrial revolution, which is the network of home appliances, infrastructures, and vehicles to remotely investigate these systems. For the operation of compact IoT devices, batteries are widely used as electric power, and the limited lifetime of batteries inevitably leads to periodic replacement. Magneto-mechano-electric (MME) generators may be alternatives to batteries inside the IoT devices by converting stray magnetic field into electric energy, since we are always surrounded by ambient alternating current (AC) magnetic fields induced from electric power transmission lines everywhere. This article reviews the recent domestic research progress in high-performance MME generators and their application field for IoT and electronic devices.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2020년)에 의하여 연구되었음.

References

  1. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, Future Gener. Comput. Syst., 29, 1645 (2013). [DOI: https://doi.org/10.1016/j. future.2013.01.010]
  2. R. Haight, W. Haensch, and D. Friedman, Science, 353, 124 (2016). [DOI: https://doi.org/10.1126/science.aag0476]
  3. G. T. Hwang, V. Annapureddy, J. H. Han, D. J. Joe, C. Baek, D. Y. Park, D. H. Kim, J. H. Park, C. K. Jeong, K. I. Park, J. J. Choi, D. K. Kim, J. Ryu, and K. J. Lee, Adv. Energy Mater., 6, 1600237 (2016). [DOI: https://doi.org/10.1002/aenm.201600237]
  4. P. Hosseinnezhad, S. Behnia, and S. Fathizadeh, Trans. Electr. Electron. Mater., 22, 257 (2021). [DOI: https://doi.org/10.1007/s42341-020-00228-6]
  5. A. Harb, Renewable Energy, 36, 2641 (2011). [DOI: https://doi.org/10.1016/j.renene.2010.06.014]
  6. J. Ryu, J. E. Kang, Y. Zhou, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, Y. D. Kim, S. Priya, S. Y. Lee, S. Jeong, and D. Y. Jeong, Energy Environ. Sci., 8, 2402 (2015). [DOI: https://doi.org/10.1039/C5EE00414D]
  7. V. Annapureddy, M. Kim, H. Palneedi, H. Y. Lee, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, D. Y. Jeong, and J. Ryu, Adv. Energy Mater., 6, 1601244 (2016). [DOI: https://doi.org/10.1002/aenm.201601244]
  8. V. Annapureddy, H. Y. Lee, W. H. Yoon, H. J. Woo, J. H. Lee, H. Palneedi, H. J. Kim, J. J. Choi, D. Y. Jeong, S. N. Yi, and J. Ryu, Appl. Phys. Lett., 109, 093901 (2016). [DOI: https://doi.org/10.1063/1.4962047]
  9. R. Sriramdas, M. G. Kang, M. Meng, M. Kiani, J. Ryu, M. Sanghadasa, and S. Priya, Adv. Energy Mater., 10, 1903689 (2020). [DOI: https://doi.org/10.1002/aenm.201903689]
  10. T. Nayak, B. Swain, P. P. Nayak, and S. Bhuyan, Trans. Electr. Electron. Mater., 22, 250 (2021). [DOI: https://doi.org/10.1007/s42341-020-00227-7]
  11. V. Annapureddy, S. M. Na, G. T. Hwang, M. G. Kang, R. Sriramdas, H. Palneedi, W. H. Yoon, B. D. Hahn, J. W. Kim, C. W. Ahn, D. S. Park, J. J. Choi, D. Y. Jeong, A. B. Flatau, M. Peddigari, S. Priya, K. H. Kim, and J. Ryu, Energy Environ. Sci., 11, 818 (2018). [DOI: https://doi.org/10.1039/C7EE03429F]
  12. H. Song, D. R. Patil, W. H. Yoon, K. H. Kim, C. Choi, J. H. Kim, G. T. Hwang, D. Y. Jeong, and J. Ryu, Energy Environ. Sci., 13, 4238 (2020). [DOI: https://doi.org/10.1039/D0EE01574A]
  13. C. Wu, A. C. Wang, W. Ding, H. Guo, and Z. L. Wang, Adv. Energy Mater., 9, 1802906 (2019). [DOI: https://doi.org/10.1002/aenm.201802906]
  14. Z. L. Wang, T. Jiang, and L. Xu, Nano Energy, 39, 9 (2017). [DOI: https://doi.org/10.1016/j.nanoen.2017.06.035]
  15. F. R. Fan, Z. Q. Tian, and Z. L. Wang, Nano Energy, 1, 328 (2012). [DOI: https://doi.org/10.1016/j.nanoen.2012.01.004]
  16. K. W. Lim, M. Peddigari, C. H. Park, H. Y. Lee, Y. Min, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, J. H. Choi, D. S. Park, J. K. Hong, J. T. Yeom, W. H. Yoon, J. Ryu, S. N. Yi, and G. T. Hwang, Energy Environ. Sci., 12, 666 (2019). [DOI: https://doi.org/10.1039/C8EE03008A]
  17. G. D. Nelson, Tex. Heart Inst. J., 20, 12 (1993). [DOI: https://doi.org/10.1111/j.1540-8159.1982.tb02226.x]
  18. M. J. Wilhelm, C. Schmid, D. Hammel, S. Kerber, H. M. Loick, M. Herrmann, and H. H. Scheld, Ann. Thorac. Surg., 64, 1707 (1997). [DOI: https://doi.org/10.1016/S0003-4975(97)00989-2]
  19. H. E. Lee, J. H. Park, D. Jang, J. H. Shin, T. H. Im, J. H. Lee, S. K. Hong, H. S. Wang, M. S. Kwak, M. Peddigari, C. K. Jeong, Y. Min, C. H. Park, J. J. Choi, J. Ryu, W. H. Yoon, D. Kim, K. J. Lee, and G. T. Hwang, Nano Energy, 75, 104951 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.104951]
  20. A. K. Kanal and T. Kovacshazy, Proc. 2019 20th International Carpathian Control Conference (ICCC) (IEEE, Krakow-Wieliczka, Poland, 2019) p. 1-5. [DOI: https://doi.org/10.1109/CarpathianCC.2019.8766006]