DOI QR코드

DOI QR Code

Halide Perovskite Single Crystals

할라이드 페로브스카이트 단결정

  • Choi, Jin San (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan) ;
  • Jo, Jae Hun (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan) ;
  • Woo, Do Hyun (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan) ;
  • Hwang, Young-Hun (Department of Semiconductor Applications, Ulsan College) ;
  • Kim, Ill Won (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan) ;
  • Kim, Tae Heon (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan) ;
  • Ahn, Chang Won (Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan)
  • 최진산 (울산대학교 물리학과 에너지하베스트-스토리지연구센터) ;
  • 조재훈 (울산대학교 물리학과 에너지하베스트-스토리지연구센터) ;
  • 우도현 (울산대학교 물리학과 에너지하베스트-스토리지연구센터) ;
  • 황영훈 (울산과학대학교 반도체응용과) ;
  • 김일원 (울산대학교 물리학과 에너지하베스트-스토리지연구센터) ;
  • 김태헌 (울산대학교 물리학과 에너지하베스트-스토리지연구센터) ;
  • 안창원 (울산대학교 물리학과 에너지하베스트-스토리지연구센터)
  • Received : 2021.07.26
  • Accepted : 2021.08.06
  • Published : 2021.09.01

Abstract

For the last decades, a research hotspot for the halide perovskites (HPs) is now showing great progress in terms of improving efficiency for numerous photovoltaic devices (PVDs). However, it still faces challenges in the case of long-term stability in the air atmosphere. Defect-free high-quality HP single crystals show their promising properties for the remarkable development of highly efficient and stable PVDs. Here, we summarize the growth processing routes for the stable HP single crystals as well as briefly discuss the pros and cons of those well-established synthesis routes. Furthermore, we briefly include the comparison note between the HP single crystals and polycrystalline perovskite films regarding their device applications. Based on the future progress, the review concludes subjective perspectives and current challenges for the development of HPs high-quality PVDs.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program (2021R1I1A1A01057086, 2020R1I1A3068422) and Priority Research Centers Program (NRF-2019R1A6A1A11053838) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

References

  1. NREL, Best Research-Cell Efficiencies, https://www.nrel.gov/pv/cell-efficiency.html (2021).
  2. J. Chen, D. J. Morrow, Y. Fu, W. Zheng, Y. Zhao, L. Dang, M. J. Stolt, D. D. Kohler, X. Wang, K. J. Czech, M. P. Hautzinger, S. Shen, L. Guo, A. Pan, J. C. Wright, and S. Jin, J. Am. Chem. Soc., 139, 13525 (2017). [DOI: https://doi.org/10.1021/jacs.7b07506]
  3. L. Gao and G. Yang, Sol. RRL, 4, 1900200 (2020). [DOI: https://doi.org/10.1002/solr.201900200]
  4. N. Phung, A. Al-Ashouri, S. Meloni, A. Mattoni, S. Albrecht, E. L. Unger, A. Merdasa, and A. Abate, Adv. Energy Mater., 10, 1903735 (2020). [DOI: https://doi.org/10.1002/aenm.201903735]
  5. D. Prochowicz, M. M. Tavakoli, A. Q. Alanazi, S. Trivedi, H. T. Dastjerdi, S. M. Zakeeruddin, M. Gratzel, and P. Yadav, ACS Omega, 4, 16840 (2019). [DOI: https://doi.org/10.1021/acsomega.9b01701]
  6. A. Y. Alsalloum, B. Turedi, X. Zheng, S. Mitra, A. A. Zhumekenov, K. J. Lee, P. Maity, I. Gereige, A. AlSaggaf, I. S. Roqan, O. F. Mohammed, and O. M. Bakr, ACS Energy Lett., 5, 657 (2020). [DOI: https://doi.org/10.1021/acsenergylett.9b02787]
  7. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Science, 347, 967 (2015). [DOI: https://doi.org/10.1126/science.aaa5760]
  8. Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, S. Tang, Q. Wang, X. Xiao, Y. Bai, Y. Deng, and J. Huang, Nat. Commun., 8, 1890 (2017). [DOI: https://doi.org/10.1038/s41467-017-02039-5]
  9. Y. Liu, Y. Zhang, K. Zhao, Z. Yang, J. Feng, X. Zhang, K. Wang, L. Meng, H. Ye, M. Liu, and S. Liu, Adv. Mater., 30, 1707314 (2018). [DOI: https://doi.org/10.1002/adma.201707314]
  10. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, Science, 347, 519 (2015). [DOI: https://doi.org/10.1126/science.aaa2725]
  11. C. Zuo and L. Ding, Angew. Chem. Int. Ed., 56, 6528 (2017). [DOI: https://doi.org/10.1002/anie.201702265]
  12. Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J. M. Luther, and M. C. Beard, Nat. Commun., 6, 7961 (2015). [DOI: https://doi.org/10.1038/ncomms8961]
  13. M. Daub and H. Hillebrecht, Angew. Chem. Int. Ed., 54, 11016 (2015). [DOI: https://doi.org/10.1002/anie.201506449]
  14. W. Q. Liao, Y. Zhang, C. L. Hu, J. G. Mao, H. Y. Ye, P. F. Li, S. D. Huang, and R. G. Xiong, Nat. Commun., 6, 7338 (2015). [DOI: https://doi.org/10.1038/ncomms8338]
  15. D. L. Reger, S. R. Goode, and D. W. Ball, Chemistry: Principles and Practice (Cengage Learning, Belmont, CA, USA, 2009) p. 482.
  16. J. W. Moore, C. L. Stanitski, and P. C. Jurs, Principles of Chemistry: The Molecular Science, 1st edn. (Cengage Learning, Belmont, CA, USA, 2010) p. 513.
  17. Z. Lian, Q. Yan, T. Gao, J. Ding, Q. Lv, C. Ning, Q. Li, and J. I. Sun, J. Am. Chem. Soc., 138, 9409 (2016). [DOI: https://doi.org/10.1021/jacs.6b05683]
  18. Y. Bi, E. M. Hutter, Y. Fang, Q. Dong, J. Huang, and T. J. Savenije, J. Phys. Chem. Lett., 7, 923 (2016). [DOI: https://doi.org/10.1021/acs.jpclett.6b00269]
  19. G. Walters, B. R. Sutherland, S. Hoogland, D. Shi, R. Comin, D. P. Sellan, O. M. Bakr, and E. H. Sargent, ACS Nano, 9, 9340 (2015). [DOI: https://doi.org/10.1021/acsnano.5b03308]
  20. Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, and S. Liu, Adv. Mater., 27, 5176 (2015). [DOI: https://doi.org/10.1002/adma.201502597]
  21. Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia, and X. Tao, CrystEngComm, 17, 665 (2015). [DOI: https://doi.org/10.1039/C4CE02106A]
  22. L. Lee, J. Baek, K. S. Park, Y. E. Lee, N. K. Shrestha, and M. M. Sung, Nat. Commun., 8, 15882 (2017). [DOI: https://doi.org/10.1038/ncomms15882]
  23. B. Wenger, P. K. Nayak, X. Wen, S. V. Kesava, N. K. Noel, and H. J. Snaith, Nat. Commun., 8, 590 (2017). [DOI: https://doi.org/10.1038/s41467-017-00567-8]
  24. Z. Zuo, J. Ding, Y. Zhao, S. Du, Y. Li, X. Zhan, and H. Cui, J. Phys. Chem. Lett., 8, 684 (2017). [DOI: https://doi.org/10.1021/acs.jpclett.6b02812]
  25. H. H. Fang, S. Adjokatse, H. Wei, J. Yang, G. R. Blake, J. Huang, J. Even, and M. A. Loi, Sci. Adv., 2, e1600534 (2016). [DOI: https://doi.org/10.1126/sciadv.1600534]
  26. H. Diab, G. Trippe-Allard, F. Ledee, K. Jemli, C. Vilar, G. Bouchez, V.L.R. Jacques, A. Tejeda, J. Even, J. S. Lauret, E. Deleporte, and D. Garrot, J. Phys. Chem. Lett., 7, 5093 (2016). [DOI: https://doi.org/10.1021/acs.jpclett.6b02261]
  27. B. Wu, H. T. Nguyen, Z. Ku, G. Han, D. Giovanni, N. Mathews, H. J. Fan, and T. C. Sum, Adv. Energy Mater., 6, 1600551 (2016). [DOI: https://doi.org/10.1002/aenm.201600551]
  28. J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, ACS Nano, 10, 6363 (2016). [DOI: https://doi.org/10.1021/acsnano.6b02734]
  29. Y. Yamada, T. Yamada, L. Q. Phuong, N. Maruyama, H. Nishimura, A. Wakamiya, Y. Murata, and Y. Kanemitsu, J. Am. Chem. Soc., 137, 10456 (2015). [DOI: https://doi.org/10.1021/jacs.5b04503]
  30. S. Brittman and E. C. Garnett, J. Phys. Chem. C, 120, 616 (2016). [DOI: https://doi.org/10.1021/acs.jpcc.5b11075]
  31. G. Grancini, V. D'Innocenzo, E. R. Dohner, N. Martino, A.R.S. Kandada, E. Mosconi, F. De Angelis, H. I. Karunadasa, E. T. Hoke, and A. Petrozza, Chem. Sci., 6, 7305 (2015). [DOI: https://doi.org/10.1039/C5SC02542G]
  32. T. Baikie, N. S. Barrow, Y. Fang, P. J. Keenan, P. R. Slater, R. O. Piltz, M. Gutmann, S. G. Mhaisalkar, and T. J. White, J. Mater. Chem. A, 3, 9298 (2015). [DOI: https://doi. org/10.1039/C5TA01125F]
  33. Q. Han, S. H. Bae, P. Sun, Y. T. Hsieh, Y. Yang, Y. S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, and Y. Yang, Adv. Mater., 28, 2253 (2016). [DOI: https://doi.org/10.1002/adma.201505002]
  34. J. M. Kadro, K. Nonomura, D. Gachet, M. Gratzel, and A. Hagfeldt, Sci. Rep., 5, 11654 (2015). [DOI: https://doi.org/10.1038/srep11654]
  35. M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed, and O. M. Bakr, Nat. Commun., 6, 7586 (2015). [DOI: https://doi.org/10.1038/ncomms8586]
  36. M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, and O. M. Bakr, Nat. Commun., 6, 8724 (2015). [DOI: https://doi.org/10.1038/ncomms9724]
  37. G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, J. Phys. Chem. Lett., 6, 3781 (2015). [DOI: https://doi.org/10.1021/acs.jpclett.5b01666]
  38. T. Zhang, M. Yang, E. E. Benson, Z. Li, J. van de Lagemaat, J. M. Luther, Y. Yan, K. Zhu, and Y. Zhao, Chem. Commun., 51, 7820 (2015). [DOI: https://doi.org/10.1039/C5CC01835H]
  39. S. Dastidar, C. J. Hawley, A. D. Dillon, A. D. Gutierrez-Perez, J. E. Spanier, and A. T. Fafarman, J. Phys. Chem. Lett., 8, 1278 (2017). [DOI: https://doi.org/10.1021/acs.jpclett.7b00134]
  40. D. B. Straus, S. Guo, and R. J. Cava, J. Am. Chem. Soc., 141, 11435 (2019). [DOI: https://doi.org/10.1021/jacs.9b06055]
  41. D. M. Trots and S. V. Myagkota, J. Phys. Chem. Solids, 69, 2520 (2008). [DOI: https://doi.org/10.1016/j.jpcs.2008.05.007]
  42. P. Zhang, G. Zhang, L. Liu, D. Ju, L. Zhang, K. Cheng, and X. Tao, J. Phys. Chem. Lett., 9, 5040 (2018). [DOI: https://doi.org/10.1021/acs.jpclett.8b01945]
  43. J. Su, Y. Q. Huang, H. Chen, and J. Huang, Cryst. Res. Technol., 55, 1900222 (2020). [DOI: https://doi.org/10.1002/crat.201900222]
  44. C. W. Ahn, J. H. Jo, J. C. Kim, H. Ullah, S. Ryu, Y. Hwang, J. S. Choi, J. Lee, S. Lee, H. Jeen, Y. H. Shin, H. Y. Jeong, I. W. Kim, and T. H. Kim, J. Materiomics, 6, 651 (2020). [DOI: https://doi.org/10.1016/j.jmat.2020.05.008]
  45. N. Leupold, K. Schotz, S. Cacovich, I. Bauer, M. Schultz, M. Daubinger, L. Kaiser, A. Rebai, J. Rousset, A. Kohler, P. Schulz, R. Moos, and F. Panzer, ACS Appl. Mater. Interfaces, 11, 30259 (2019). [DOI: https://doi.org/10.1021/acsami.9b09160]
  46. Z. Hong, D. Tan, R. A. John, Y.K.E. Tay, Y.K.T. Ho, X. Zhao, T. C. Sum, N. Mathews, F. Garcia, and H. S. Soo, iScience, 16, 312 (2019). [DOI: https://doi.org/10.1016/j.isci.2019.05.042]
  47. Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, Z. Yang, and S. Liu, Adv. Opt. Mater., 4, 1829 (2016). [DOI: https://doi.org/10.1002/adom.201600327]
  48. Y. Liu, X. Ren, J. Zhang, Z. Yang, D. Yang, F. Yu, J. Sun, C. Zhao, Z. Yao, B. Wang, Q. Wei, F. Xiao, H. Fan, H. Deng, L. Deng, and S. F. Liu, Sci. China: Chem., 60, 1367 (2017). [DOI: https://doi.org/10.1007/s11426-017-9081-3]
  49. Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang, and S. Liu, Adv. Mater., 28, 9204 (2016). [DOI: https://doi.org/10.1002/adma.201601995]
  50. H. S. Rao, B. X. Chen, X. D. Wang, D. B. Kuang, and C. Y. Su, Chem. Commun., 53, 5163 (2017). [DOI: https://doi.org/10.1039/C7CC02447A]
  51. Y. X. Chen, Q. Q. Ge, Y. Shi, J. Liu, D. J. Xue, J. Y. Ma, J. Ding, H. J. Yan, J. S. Hu, and L. J. Wan, J. Am. Chem. Soc., 138, 16196 (2016). [DOI: https://doi.org/10.1021/jacs.6b09388]
  52. H. L. Yue, H. H. Sung, and F. C. Chen, Adv. Electron. Mater., 4, 1700655 (2018). [DOI: https://doi.org/10.1002/aelm.201700655]
  53. X. D. Wang, W. G. Li, J. F. Liao, and D. B. Kuang, Sol. RRL, 3, 1800294 (2019). [DOI: https://doi.org/10.1002/solr.201800294]
  54. Z. Yang, Y. Deng, X. Zhang, S. Wang, H. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. Ma, Adv. Mater., 30, 1704333 (2018). [DOI: https://doi.org/10.1002/adma.201704333]
  55. Y. H. Deng, Z. Q. Yang, and R. M. Ma, Nano Convergence, 7, 25 (2020). [DOI: https://doi.org/10.1186/s40580-020-00236-5]
  56. L. Wang, P. Chen, N. Thongprong, M. Young, P. S. Kuttipillai, C. Jiang, P. Zhang, K. Sun, P. M. Duxbury, and R. R. Lunt, Adv. Mater. Interfaces, 4, 1701003 (2017). [DOI: https://doi.org/10.1002/admi.201701003]
  57. L. Wang, P. Chen, P. S. Kuttipillai, I. King, R. Staples, K. Sun, and R. R. Lunt, ACS Appl. Mater. Interfaces, 11, 32076 (2019). [DOI: https://doi.org/10.1021/acsami.9b05592]
  58. Y. Wang, X. Sun, Z. Chen, Y. Y. Sun, S. Zhang, T. M. Lu, E. Wertz, and J. Shi, Adv. Mater., 29, 1702643 (2017). [DOI: https://doi.org/10.1002/adma.201702643]
  59. J. Jiang, X. Sun, X. Chen, B. Wang, Z. Chen, Y. Hu, Y. Guo, L. Zhang, Y. Ma, L. Gao, F. Zheng, L. Jin, M. Chen, Z. Ma, Y. Zhou, N. P. Padture, K. Beach, H. Terrones, Y. Shi, D. Gall, T. M. Lu, E. Wertz, J. Feng, and J. Shi, Nat. Commun., 10, 4145 (2019). [DOI: https://doi.org/10.1038/s41467-019-12056-1]
  60. L. Ji, H. Y. Hsu, J. C. Lee, A. J. Bard, and E. T. Yu, Nano Lett., 18, 994 (2018). [DOI: https://doi.org/10.1021/acs.nanolett.7b04445]
  61. Y. Wang, F. Yang, X. Li, F. Ru, P. Liu, L. Wang, W. Ji, J. Xia, and X. Meng, Adv. Funct. Mater., 29, 1904913 (2019). [DOI: https://doi.org/10.1002/adfm.201904913]
  62. Y. Wang, C. Jia, Z. Fan, Z. Lin, S. J. Lee, T. L. Atallah, J. R. Caram, Y. Huang, and X. Duan, Nano Lett., 21, 1454 (2021). [DOI: https://doi.org/10.1021/acs.nanolett.0c04594]
  63. S. A. Morley, H. Marquez, and D. Lederman, APL Mater., 8, 011101 (2020). [DOI: https://doi.org/10.1063/1.5126601]
  64. K. Kimura, Y. Nakamura, T. Matsushita, and T. Kondo, Jpn. J. Appl. Phys., 58, SBBF04 (2019). [DOI: https://doi.org/10.7567/1347-4065/aafed0]
  65. T. Miyadera, Y. Auchi, T. Koganezawa, H. Yaguchi, and M. Chikamatsu, APL Mater., 8, 041104 (2020). [DOI: https://doi.org/10.1063/1.5142307]
  66. F. Cao, W. Tian, M. Wang, M. Wang, and L. Li, InfoMat, 2, 577 (2020). [DOI: https://doi.org/10.1002/inf2.12074]
  67. Y. Q. Huang, J. Su, Q. F. Li, D. Wang, L. H. Xu, and Y. Bai, Phys. B, 563, 107 (2019). [DOI: https://doi.org/10.1016/j.physb.2019.03.035]
  68. B. B. Zhang, F. Wang, H. Zhang, B. Xiao, Q. Sun, J. Guo, A. B. Hafsia, A. Shao, Y. Xu, and J. Zhou, Appl. Phys. Lett., 116, 063505 (2020). [DOI: https://doi.org/10.1063/1.5134108]
  69. J. Li, X. Du, G. Niu, H. Xie, Y. Chen, Y. Yuan, Y. Gao, H. Xiao, J. Tang, A. Pan, and B. Yang, ACS Appl. Mater. Interfaces, 12, 989 (2020). [DOI: https://doi.org/10.1021/acsami.9b14772]
  70. C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels, and M. G. Kanatzidis, Cryst. Growth Des., 13, 2722 (2013). [DOI: https://doi.org/10.1021/cg400645t]
  71. J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, G. Niu, and J. Tang, ACS Photonics, 5, 398 (2018). [DOI: https://doi.org/10.1021/acsphotonics.7b00837]
  72. F. Wei, Z. Deng, S. Sun, F. Zhang, D. M. Evans, G. Kieslich, S. Tominaka, M. A. Carpenter, J. Zhang, P. D. Bristowe, and A. K. Cheetham, Chem. Mater., 29, 1089 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.6b03944]
  73. H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, and C. Y. Su, Adv. Mater., 29, 1602639 (2017). [DOI: https://doi.org/10.1002/adma.201602639]
  74. Y. Zhao, C. Zhao, X. Chen, T. Luo, M. Ding, T. Ye, W. Zhang, and H. Chang, J. Mater. Sci.: Mater. Electron., 31, 2167 (2020). [DOI: https://doi.org/10.1007/s10854-019-02742-7]
  75. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett., 13, 1764 (2013). [DOI: https://doi.org/10.1021/nl400349b]
  76. B. Murali, H. K. Kolli, J. Yin, R. Ketavath, O. M. Bakr, and O. F. Mohammed, ACS Mater. Lett., 2, 184 (2020). [DOI: https://doi.org/10.1021/acsmaterialslett.9b00290]