Acknowledgement
The referees have reviewed the paper very carefully. The authors express their deep thanks for the comments.
References
- A. Alam & M. Imdad: Comparable linear contractions in ordered metric spaces. Fixed Point Theory 18 (2017), no. 2, 415-432. https://doi.org/10.24193/fpt-ro.2017.2.33
- A. Alam & M. Imdad: Nonlinear contractions in metric spaces under locally T-transitive binary relations. Fixed Point Theory 19 (2018), no. 1, 13-24. https://doi.org/10.24193/fpt-ro.2018.1.02
- A. Alam & M. Imdad: Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 17 (2015), no. 4, 693-702. https://doi.org/10.1007/s11784-015-0247-y
- A. Amini-Harandi & H. Emami: A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations. Nonlinear Anal. 72 (2010), no. 5, 2238-2242. https://doi.org/10.1016/j.na.2009.10.023
- N.A. Assad & W.A. Kirk: Fixed point theorems for set-valued mappings of contractive type. Pac. J. Math. 43 (1972), 553-562. https://doi.org/10.2140/pjm.1972.43.553
- I. Beg & A.R. Butt Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces. Math. Commun. 15 (2010), 65-75.
- I. Beg & A.R. Butt: Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces. Nonlinear Anal. 71 (2009), 3699-3704. https://doi.org/10.1016/j.na.2009.02.027
- L.B. Ciric: Common fixed point theorems for multi-valued mappings. Demonstr. Math. 39 (2006), no. 2, 419-428. https://doi.org/10.1515/dema-2006-0220
- L.B. Ciric: Multivalued nonlinear contraction mappings. Nonlinear Anal. 71 (2009), 2716-2723. https://doi.org/10.1016/j.na.2009.01.116
- P.Z. Daffer, H. Kaneko & W. Li: Oa a conjecture of S. Reich. Proc. Amer. Math. Soc. 124 (1996), no. 10, 3159-3162. https://doi.org/10.1090/S0002-9939-96-03659-3
- Y. Feng & S. Liu : Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings. J. Math. Anal. Appl. 317 (2006), 103-112. https://doi.org/10.1016/j.jmaa.2005.12.004
- D. Klim & D. Wardowski: Fixed point theorems for set-valued contractions in complete metric spaces. J. Math. Anal. Appl. 334 (2007), 132-139. https://doi.org/10.1016/j.jmaa.2006.12.012
- S. Lipschutz: Schaum's Outlines of Theory and Problems of Set Theory and Related Topics. McGraw-Hill, New York, USA, 1964.
- N. Mizoguchi & W. Takahashi: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141 (1989), 177-188. https://doi.org/10.1016/0022-247X(89)90214-X
- S. Nadler: Multi-valued contraction mappings. Pac. J. Math. 20 (1969), no. 2, 475-488. https://doi.org/10.2140/pjm.1969.30.475
- J.J. Nieto & R. Rodriguez-Lopez: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5
- G. Prasad: Fixed points of Kannan contractive mappings in relational metric spaces. J. Anal. (2020). https://doi.org/10.1007/s41478-020-00273-7
- G. Prasad: Fixed point theorems via w-distance in relational metric spaces with an application. Filomat 34 (2020), no. 6, 1889-1898. https://doi.org/10.2298/FIL2006889P
- G. Prasad & R.C. Dimri: Fixed point theorems via comparable mappings in ordered metric spaces. J. Anal. 27 (2019), no. 4, 1139-1150. https://doi.org/10.1007/s41478-019-00165-5
- A.C.M. Ran & M.C.B. Reurings: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132 (2003), no. 5, 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
- S. Reich: Fixed points of contractive functions. Boll. Unione Mat. Ital. 5 , (1972), 26-42.
- B. Samet & M. Turinici: Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal. 13 (2012), no. 2, 82-97.
- T. Suzuki: Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's. J. Math. Anal. Appl. 340 (2008), 752-755. https://doi.org/10.1016/j.jmaa.2007.08.022
- J. Tiammee & S. Suantai: Fixed point theorems for monotone multi-valued mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2014 (2014), Paper No. 110.
- M. Turinici: Ran and Reuring's theorems in ordered metric spaces. J. Indian Math. Soc. 78 (2011), 207-214.