DOI QR코드

DOI QR Code

FIXED POINTS OF SET-VALUED MAPPINGS IN RELATIONAL METRIC SPACES

  • Received : 2020.04.30
  • Accepted : 2021.07.22
  • Published : 2021.08.31

Abstract

In this paper, we generalize the notion of comparable set-valued mappings by introducing two types of 𝓡-closed set-valued mappings and utilize these to obtain an analogue of celebrated Mizoguchi and Takahashi fixed point theorem in relational metric spaces. To annotate the claims and usefulness of such findings, we prove fixed point results for both set-valued and single-valued mappings and validate the assertions with the help of examples. In this way, these investigations extend, modify and generalize some prominent recent fixed point results obtained by Tiammee and Suantai [24], Amini-Harandi and Emami [4], Prasad and Dimri [19] and several others in the settings of relational metric spaces.

Keywords

Acknowledgement

The referees have reviewed the paper very carefully. The authors express their deep thanks for the comments.

References

  1. A. Alam & M. Imdad: Comparable linear contractions in ordered metric spaces. Fixed Point Theory 18 (2017), no. 2, 415-432. https://doi.org/10.24193/fpt-ro.2017.2.33
  2. A. Alam & M. Imdad: Nonlinear contractions in metric spaces under locally T-transitive binary relations. Fixed Point Theory 19 (2018), no. 1, 13-24. https://doi.org/10.24193/fpt-ro.2018.1.02
  3. A. Alam & M. Imdad: Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 17 (2015), no. 4, 693-702. https://doi.org/10.1007/s11784-015-0247-y
  4. A. Amini-Harandi & H. Emami: A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations. Nonlinear Anal. 72 (2010), no. 5, 2238-2242. https://doi.org/10.1016/j.na.2009.10.023
  5. N.A. Assad & W.A. Kirk: Fixed point theorems for set-valued mappings of contractive type. Pac. J. Math. 43 (1972), 553-562. https://doi.org/10.2140/pjm.1972.43.553
  6. I. Beg & A.R. Butt Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces. Math. Commun. 15 (2010), 65-75.
  7. I. Beg & A.R. Butt: Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces. Nonlinear Anal. 71 (2009), 3699-3704. https://doi.org/10.1016/j.na.2009.02.027
  8. L.B. Ciric: Common fixed point theorems for multi-valued mappings. Demonstr. Math. 39 (2006), no. 2, 419-428. https://doi.org/10.1515/dema-2006-0220
  9. L.B. Ciric: Multivalued nonlinear contraction mappings. Nonlinear Anal. 71 (2009), 2716-2723. https://doi.org/10.1016/j.na.2009.01.116
  10. P.Z. Daffer, H. Kaneko & W. Li: Oa a conjecture of S. Reich. Proc. Amer. Math. Soc. 124 (1996), no. 10, 3159-3162. https://doi.org/10.1090/S0002-9939-96-03659-3
  11. Y. Feng & S. Liu : Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings. J. Math. Anal. Appl. 317 (2006), 103-112. https://doi.org/10.1016/j.jmaa.2005.12.004
  12. D. Klim & D. Wardowski: Fixed point theorems for set-valued contractions in complete metric spaces. J. Math. Anal. Appl. 334 (2007), 132-139. https://doi.org/10.1016/j.jmaa.2006.12.012
  13. S. Lipschutz: Schaum's Outlines of Theory and Problems of Set Theory and Related Topics. McGraw-Hill, New York, USA, 1964.
  14. N. Mizoguchi & W. Takahashi: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141 (1989), 177-188. https://doi.org/10.1016/0022-247X(89)90214-X
  15. S. Nadler: Multi-valued contraction mappings. Pac. J. Math. 20 (1969), no. 2, 475-488. https://doi.org/10.2140/pjm.1969.30.475
  16. J.J. Nieto & R. Rodriguez-Lopez: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5
  17. G. Prasad: Fixed points of Kannan contractive mappings in relational metric spaces. J. Anal. (2020). https://doi.org/10.1007/s41478-020-00273-7
  18. G. Prasad: Fixed point theorems via w-distance in relational metric spaces with an application. Filomat 34 (2020), no. 6, 1889-1898. https://doi.org/10.2298/FIL2006889P
  19. G. Prasad & R.C. Dimri: Fixed point theorems via comparable mappings in ordered metric spaces. J. Anal. 27 (2019), no. 4, 1139-1150. https://doi.org/10.1007/s41478-019-00165-5
  20. A.C.M. Ran & M.C.B. Reurings: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132 (2003), no. 5, 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
  21. S. Reich: Fixed points of contractive functions. Boll. Unione Mat. Ital. 5 , (1972), 26-42.
  22. B. Samet & M. Turinici: Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal. 13 (2012), no. 2, 82-97.
  23. T. Suzuki: Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's. J. Math. Anal. Appl. 340 (2008), 752-755. https://doi.org/10.1016/j.jmaa.2007.08.022
  24. J. Tiammee & S. Suantai: Fixed point theorems for monotone multi-valued mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2014 (2014), Paper No. 110.
  25. M. Turinici: Ran and Reuring's theorems in ordered metric spaces. J. Indian Math. Soc. 78 (2011), 207-214.