References
- T. Akyel and B.N. Ornek: Some Remarks on Schwarz lemma at the boundary. Filomat 31 (2017), no. 13, 4139-4151. https://doi.org/10.2298/FIL1713139A
- T.A. Azeroglu & B.N. Ornek: A refined Schwarz inequality on the boundary. Complex Variables and Elliptic Equations 58 (2013), 571-577. https://doi.org/10.1080/17476933.2012.718338
- H.P. Boas: Julius and Julia: Mastering the Art of the Schwarz lemma. Amer. Math. Monthly 117 (2010), 770-785. https://doi.org/10.4169/000298910x521643
- V.N. Dubinin: The Schwarz inequality on the boundary for functions regular in the disc. J. Math. Sci. 122 (2004), 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
- G.M. Golusin: Geometric Theory of Functions of Complex Variable [in Russian]. 2nd edn., Moscow, 1966.
- I.S. Jack: Functions starlike and convex of order α. J. London Math. Soc. 3 (1971), 469-474. https://doi.org/10.1112/jlms/s2-3.3.469
- M. Jeong: The Schwarz lemma and its applications at a boundary point. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), 275-284.
- M. Mateljevic, N. Mutavdzc & B.N. Ornek: Note on Some Classes of Holomorphic Functions Related to Jack's and Schwarz's Lemma. DOI: 10.13140/RG.2.2.25744.15369. ResearchGate.
- P.R. Mercer: Sharpened Versions of the Schwarz Lemma. J. Math. Anal. Appl. 205 (1997), 508-511. https://doi.org/10.1006/jmaa.1997.5217
- P.R. Mercer: Boundary Schwarz inequalities arising from Rogosinski's lemma. Journal of Classical Analysis 12 (2018), 93-97. https://doi.org/10.7153/jca-2018-12-08
- P.R. Mercer: An improved Schwarz lemma at the boundary. Open Mathematics 16 (2018), 1140-1144. https://doi.org/10.1515/math-2018-0096
- R. Osserman: A sharp Schwarz inequality on the boundary. Proc. Amer. Math. Soc. 128 (2000) 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
- B.N. Ornek & T. Duzenli: Bound Estimates for the Derivative of Driving Point Impedance Functions. Filomat 32 (2018), no. 18, 6211-6218.. https://doi.org/10.2298/fil1818211o
- B.N. Ornek & T. Duzenli: Boundary Analysis for the Derivative of Driving Point Impedance Functions. IEEE Transactions on Circuits and Systems II: Express Briefs 65 (2018), no. 9, 1149-1153. https://doi.org/10.1109/tcsii.2018.2809539
- B.N. Ornek: Sharpened forms of the Schwarz lemma on the boundary. Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059. https://doi.org/10.4134/BKMS.2013.50.6.2053
- Ch. Pommerenke: Boundary Behaviour of Conformal Maps. Springer-Verlag, Berlin. 1992.