DOI QR코드

DOI QR Code

APPLICATIONS OF THE JACK'S LEMMA FOR ANALYTIC FUNCTIONS CONCERNED WITH ROGOSINSKI'S LEMMA

  • Received : 2021.03.16
  • Accepted : 2021.08.19
  • Published : 2021.08.31

Abstract

In this study, a Schwarz lemma at the boundary for analytic functions at the unit disc, which generalizes classical Schwarz lemma for bounded analytic functions, is considered.The results of Rogosinskis lemma and Jacks lemma have been utilized to derive novel inequalities. Also, these inequalities have been strengthened by considering the critical points which are different from zero.

Keywords

References

  1. T. Akyel and B.N. Ornek: Some Remarks on Schwarz lemma at the boundary. Filomat 31 (2017), no. 13, 4139-4151. https://doi.org/10.2298/FIL1713139A
  2. T.A. Azeroglu & B.N. Ornek: A refined Schwarz inequality on the boundary. Complex Variables and Elliptic Equations 58 (2013), 571-577. https://doi.org/10.1080/17476933.2012.718338
  3. H.P. Boas: Julius and Julia: Mastering the Art of the Schwarz lemma. Amer. Math. Monthly 117 (2010), 770-785. https://doi.org/10.4169/000298910x521643
  4. V.N. Dubinin: The Schwarz inequality on the boundary for functions regular in the disc. J. Math. Sci. 122 (2004), 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  5. G.M. Golusin: Geometric Theory of Functions of Complex Variable [in Russian]. 2nd edn., Moscow, 1966.
  6. I.S. Jack: Functions starlike and convex of order α. J. London Math. Soc. 3 (1971), 469-474. https://doi.org/10.1112/jlms/s2-3.3.469
  7. M. Jeong: The Schwarz lemma and its applications at a boundary point. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), 275-284.
  8. M. Mateljevic, N. Mutavdzc & B.N. Ornek: Note on Some Classes of Holomorphic Functions Related to Jack's and Schwarz's Lemma. DOI: 10.13140/RG.2.2.25744.15369. ResearchGate.
  9. P.R. Mercer: Sharpened Versions of the Schwarz Lemma. J. Math. Anal. Appl. 205 (1997), 508-511. https://doi.org/10.1006/jmaa.1997.5217
  10. P.R. Mercer: Boundary Schwarz inequalities arising from Rogosinski's lemma. Journal of Classical Analysis 12 (2018), 93-97. https://doi.org/10.7153/jca-2018-12-08
  11. P.R. Mercer: An improved Schwarz lemma at the boundary. Open Mathematics 16 (2018), 1140-1144. https://doi.org/10.1515/math-2018-0096
  12. R. Osserman: A sharp Schwarz inequality on the boundary. Proc. Amer. Math. Soc. 128 (2000) 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
  13. B.N. Ornek & T. Duzenli: Bound Estimates for the Derivative of Driving Point Impedance Functions. Filomat 32 (2018), no. 18, 6211-6218.. https://doi.org/10.2298/fil1818211o
  14. B.N. Ornek & T. Duzenli: Boundary Analysis for the Derivative of Driving Point Impedance Functions. IEEE Transactions on Circuits and Systems II: Express Briefs 65 (2018), no. 9, 1149-1153. https://doi.org/10.1109/tcsii.2018.2809539
  15. B.N. Ornek: Sharpened forms of the Schwarz lemma on the boundary. Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059. https://doi.org/10.4134/BKMS.2013.50.6.2053
  16. Ch. Pommerenke: Boundary Behaviour of Conformal Maps. Springer-Verlag, Berlin. 1992.