DOI QR코드

DOI QR Code

A Monitoring Strategy on Dispersion of Particulate Matter emitted from Domestic Limestone Open Pit Mines

국내 노천 석회석 광산먼지 확산 모니터링 방안

  • Yoon, Jinho (Department of Environmental Science, Keimyung University) ;
  • Lee, Sang-hun (Department of Environmental Science, Keimyung University) ;
  • Seo, Eui Young (Institute of Mine Reclamation Research, Mine Reclamation Corporation) ;
  • Baek, Seunghan (Institute of Mine Reclamation Research, Mine Reclamation Corporation)
  • Received : 2021.08.18
  • Accepted : 2021.08.27
  • Published : 2021.08.31

Abstract

This study proposed a strategy with literature review on effective monitoring of dispersion of the particulate matters (PM) emitted from domestic open pit lime mines. The mines generally produced a large amount of PM through the mine processes such as crushing and transportation of raw or crushed ores. The PM emission from mine facilities or transportation can be assessed using empirical equations which was prepared through the experimental tests to produce PM from ores. For effective monitoring of mine PM dispersion, this study showed a preliminary application of the monitoring network with multiple low-cost sensors around a main PM emission source for each mine site. Therefore, two domestic limestone mine sites were selected for this study, and install the monitoring network with low-cost PM sensors and LTE (Long-term evolution) data communication. Then, preliminary resultant PM data plotted according to monitoring duration showed typical PM dispersion patterns. The quantification of the PM dispersion patterns should be roughly prepared by a PM size-dependent dispersion modeling.

본 연구에서는 국내 석회석 노천 광산시설이나 현장에서 배출되는 광산 미세먼지의 특징과 이를 효과적으로 모니터링 할 수 있는 방안에 대해 관련 문헌 검토 및 전략을 제시하였다. 광산에서는 채굴된 광석의 파쇄와 운송 등의 공정에서 많은 양의 광산 먼지들이 발생한다. 광석에서 인위적으로 광산먼지를 생성시키는 실험를 통해 제시된 배출계수 및 관련 경험식으로 광산 시설 또는 운송 과정에서의 PM 배출량을 추정할 수 있다. 광산 PM 분산의 효과적인 모니터링을 위해 본 연구는 광산 현장의 주요 PM 배출원 주변에 여러 개의 저가 센서를 갖춘 모니터링 네트워크를 적용하였다. 따라서 본 연구에서는 시범적으로 국내 2곳의 석회석 광산 현장을 선정하여 저가의 PM 센서와 LTE(Long-Term Evolution) 데이터 통신을 통한 모니터링 네트워크를 설치하였다. 모니터링 예비 운전 결과 모니터링 기간에 따 PM 데이터는 통상적인 PM 분산 패턴을 보여주었다. 먼지 입도를 감안한 확산모델링을 PM 분산 패턴을 대략적으로 정량화할 수 있다. 또한 먼지 확산 추정을 위해서는 현장의 기상 및 지형 조건 이외에도 먼지 입도에 따른 거동을 반영한 확산 모델식을 이용하여야 한다.

Keywords

Acknowledgement

본 연구는 한국광해관리공단의 2021년도 광해방지기술개발사업(먼지날림방지분야, 과제명: 미세먼지 저감을 위한 광산환경 먼지날림 전주기 모니터링 시스템 개발)의 지원으로 수행되었다.

References

  1. Aatos, S. (2003) Luonnonkivituotannon elinkaaren aikaiset ymparistovaikutukset (Environmental effects in natural stone production life cycle), Suomen ymparisto, Luonto ja luonnonvarat v.656, Ymparistoministerio. p.120-127.
  2. Arup, O. & Partners (1995) Environmental effects of dust from surface mineral workings: summary report and best practice guides, HMOS.
  3. Abu-Allaban, M., Hamasha, S. and Gertler, A. (2006) Road dust resuspension in the vicinity of limestone quarries in jordan. J. Air Waste Manag Assoc., v.56, p.1440-1444. doi: 10.1080/10473289.2006.10464546
  4. Appleton, T.J., Kingman, S.W., Lowndes, I.S. and Silvester, S.A. (2006) The development of a modeling strategy for thesimulation of fugitive dust emissions from in-pit quarrying activities: a UK case study. Int. J. Min. Reclam. Environ., v.20(1), p.57-82. doi: 10.1080/13895260500396404
  5. Bluvshtein, N., Mahrer, Y., Sandler, A. and Rytwo, G. (2011) Evaluating the impact of a limestone quarry on suspended and accumulated dust. Atmos. Environ., v.45, p.1732-1739. doi: 10.1016/j.atmosenv.2010.12.055
  6. British Occupational Hygiene Society Technology Committee (BOHSTC) (1985) Dustiness estimation methods for dry materials: Part 1, their uses and standardization: Part 2, towards a standard method, Science Reviews, Technical guide no. 4.
  7. Charola, A.E. (1987) Acid Rain Effects on Stone Monuments, chem l supplement., p.436-437. doi: 10.1021/ed064p436
  8. Cattle, S.R., Hemi, K., Pearson, G.L., and Sanderson, T. (2012) Distinguishing and characterizing point-source mining dust and diffuse-source dust deposits in a semi-arid district of eastern Australia. Aeolian Res., v.6, p.21-29. doi: 10.1016/j.aeolia.2012.07.001
  9. Chang, C.T., Chang, Y.M., Lin, W.Y. and Wu, M.C. (2010) Fugitive dust emission source profiles and assessment of selected control strategies for particulate matter at gravel processing sites in Taiwan, J. Air Waste Manage. Assoc., v.60, p.1262-1268. doi: 10.3155/1047-3289.60.10.1262
  10. Chaulya, S.K., Chakraborty, M.K. and Singh, R.S. (2001) Air pollution modelling for a proposed limestone quarry. Water Air Soil Pollut., v.126, p.171-191. doi: 10.1023/A:1005279819145
  11. Chakraborty, M.K., Ahmad, M., Singh, R.S., Pal, D., Bandopadhyay, C., and Chaulya, S.K. (2002) Determination of the emission rate from various opencast mining operations. Environ. Model Softw., v.17, p.467-480. doi: 10.1016/S1364-8152(02)00010-5
  12. US EPA (2004) URL: https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aer_scid.pdf
  13. Higman, R.W. (1985) "Dustiness testing. A useful tool", in Ventilation '85, in: Proceedings of the First International Symposium on Ventilation for Contaminant Control (code 10354), Toronto, Ont., Canada., p.693-702.
  14. Hinds, W.C. (1999) Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles, 2nd ed. Wiley-Intersci., p.15-53.
  15. Holmes, N.S. and Morawska, L. (2006) A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos. Environ., v.40, p.5902-5928. doi: 10.1016/j.atmosenv.2006.06.003
  16. John, A.O. and Randolph Reed W.M. (2004) Characteristics of Fugitive Dust Generated from Unpaved Mine Haulage Roads. International Journal of Surface Mining. Int. J. Min. Reclam. Environ., p.236-252. doi: 10.1080/1389526042000263333
  17. Joseph, G.M.D., Lowndes, I.S. and Hargreaves, D.M. (2018) A computational study of particulate emissions from Old Moor Quarry, UK. J. Wind Eng. Ind. Aerodyn., v.172, p.68-84. doi: 10.1016/j.jweia.2017.10.018
  18. Lee, S.H. (2020) Review on Characteristics and Monitoring of Particulate Matter Emitted from Mining Operation. J. Korean Soc. Miner. Energy Resour., v.57, p.234-242. doi: 10.32390/ksmer.2020.57.2.234
  19. Lowndes, I.S., Silvester, S.A., Kingman, S.W. and Hargreaves, D.M. (2008) The application of an improved multi-scale computational modelling techniques to predict fugitive dust dispersion and deposition within and from surface mining operations, Proceedings of the 12th U.S./North American Mine Ventilation Symposium, K.G. Wallace ed., Reno, NV, ISBN 978-0-615-20009-5. p.359-366.
  20. Liu, Z., Wypych, P. and Cooper, P. (1999) Dust generation and air entrainment in bulk materials handling. A Review. Powder Handl. Process., v.11(4), p.421-425.
  21. Lyons, C.P. and Mark, D. (1994) Development and Testing of a Procedure to Evaluate the Dustiness of Powders and Dusts in Industrial Use. HSE (62/1994).
  22. IAQM (The Institute of Air Quality Management (2016) Guidance on the assessment of mineral dust impacts for planning, IAQM guidance report on mineral dust.
  23. Petavratzi, E., Kingman, S. and Lowndes, I. (2005) Particulates from mining operations: A review of sources. effects and regulations, Miner. Eng., v.18, p.1183-1199. doi: 10.1016/j.mineng.2005.06.017
  24. Page, S.J., Volkwein, J.C., Baron, P.A. and Deye, G.J (2000) Particulate penetration of porous foam used as a low flow rate respirable dust size classifier. Appl. Occup. Environ. Hrg., v.15, p.561-568. doi: 10.1080/10473220050028385
  25. Peng, X., Shi, G.L., Zheng, J., Liu, J.Y., Shi, X.R., Xu, J. and Feng, Y.C. (2016) Influence of quarry mining dust on PM2.5 in a city adjacent to a limestone quarry: Seasonal characteristics and source contributions. Sci. Total Environ., v.550, p.940-949. doi: 10.1016/j.scitotenv.2016.01.195
  26. Petavratzi, E., Kingman, S.W. and Lowndes, I.S. (2007) Lowndes, Assessment of the dustiness and the dust liberation mechanisms of limestone quarry operations. Chem. Eng. Process, v.46, p.1412-1423. doi: 10.1016/j.cep.2006.11.005
  27. Philip, A.B. and Michael, M.R. (1993) The Erosion of Carbonate Stone by Acid Rain: Laboratory and Field Investigations. J. Chem. Educ., p.104-108. doi: 10.1021/ed070p104
  28. Reed, W.R. (2003) An improved model for prediction of PM10 from surface mining operations, Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfilment of the requirements for the degree of doctor in philosophy in mining and minerals engineering.
  29. Schneider, T. and Hjemsted, K. (1996) Documentation of a dustiness drum test. Ann. Occup. Hyg. Soc., v.40, p.627-643. doi: 10.1093/annhyg/40.6.627
  30. Sumanth, C., Khare, M. and Shukla, K. (2020) Numerical modelling of PM10 dispersion in open-pit mines. doi: 10.1016/j.chemosphere.2020.127454
  31. Sethi, S.A. and Schneider, T. (1996) A gas fluidization dustiness tester. J. Aerosol Sci., v.27(1), p.S305-S306. doi: 10.1016/0021-8502(96)00225-X
  32. Sairanen, M., Rine, M. and Selonen, O. (2018) A review of dust emission dispersions in rock aggregate and natural stone quarries. Int J Min Miner Eng., Int. J. Min. Reclam. Environ., p.196-220. doi: 10.1080/17480930.2016.1271385
  33. Torno, S., Torano, J., Menendez, M. and Gent, M. (2011) CFD simulation of blasting dust for the design of physical barriers. Environ. Earth Sci., v.64 p.77-83. doi: 10.1007/s12665-010-0818-6
  34. Torano, J., Torno, S., Diego, I., Menendez, M. and Gent, M. (2009) Dust emission calculations in open pit storage piles protected by means of barriers, CFD and experimental tests. Environ. Fluid Mech., v.9 p.493-507. doi: 10.1007/s10652-009-9136-5
  35. US EPA (2004) AERMOD Deposition Algorithms - Science Document (Revised Draft) URL:https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aer_scid.pdf
  36. US EPA (2014) AP42: Compilation of Air Pollutant Emission Factors, Available at https://www.epa.gov/air-emissions-factorsand-quantification/ap-42-compilation-air-emissionsfactors#5thed (visited on 21/08/15)
  37. US EPA (2004) AP42 section 11.19.2 Crushed stone processing and pulverized mineral processing, Available at https://www.epa.gov/sites/default/files/2020-10/documents/c11s1902.pdf
  38. US EPA (2004) AP42, Fifth Edition, Volume I Chapter 11: Mineral Products Industry. 11.19.2 Crushed Stone Processing and Pulverized Mineral Processing, Mineral Products Industry, 8/04, 5-7. (October 2015). Available at http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s1902.pdf.
  39. World Health Organization (WHO) (1999) Hazard prevention and control in the work environment: Airborne Dust, World Health Organization, (WHO/SDE/OEH/99.14). doi: 10.1093/annhyg/44.5.405