DOI QR코드

DOI QR Code

Electrochemical Capacitance of Activated Carbons Regenerated using Thermal and Chemical Activation

  • Park, Jung Eun (Bio Resource Center, Institute for Advanced Engineering) ;
  • Lee, Gi Bbum (Bio Resource Center, Institute for Advanced Engineering) ;
  • Hwang, Sang Youp (Department of Energy Engineering, Konkuk University)
  • 투고 : 2020.11.30
  • 심사 : 2021.02.23
  • 발행 : 2021.08.28

초록

Spent activated carbons (SACs) collected from a water treatment plant were regenerated and then adopted as electrochemical material in capacitors. The SACs used in this study were regenerated via two steps, namely thermal and chemical activation. However, during the activation process, the adsorbates were converted into ashes, which caused pore blockage and decreased specific surface area. The regenerated SACs were washed with acid solutions with different levels of acidity (strong: HCl, mild: H3PO4, and weak: H2O2) to remove the ashes. The regenerated SACs washed with HCl exhibited the highest specific surface area, although their capacitance was not the highest. Conversely, the specific surface area of regenerated SACs washed using H3PO4 was slightly lower than that of HCl, but exhibited higher capacitance and electrochemical stability. Although the strong acid removed the generated ashes in the pores efficiently, it could adversely affect their structural stability, which would lead to lower capacitance.

키워드

과제정보

This work was supported by the Technology Innovation Program (20013038, Development of nonignition pitch based porous material technology for high adsorption of evaporative emissions) funded By the Ministry of Trade, Industry & Energy (MI, Korea).

참고문헌

  1. M.N. Nasruddin, M.R. Fahmi, C.Z.A. Abidin, T.S. Yen, J. Phys. Conf. Ser., 2018, 1116(3), 032022. https://doi.org/10.1088/1742-6596/1116/3/032022
  2. P.-J. Lu, H.-C. Lin, W.-T. Yu, J.-M. Chern, J. Taiwan Inst. Chem. Eng., 2011, 42(2), 305-311. https://doi.org/10.1016/j.jtice.2010.06.001
  3. J.E. Park, G.B. Lee, B.U. Hong, S.Y. Hwang, Appl. Sci., 2019, 9(23), 5132. https://doi.org/10.3390/app9235132
  4. E. Sabio, E. Gonzalez, J. Gonzalez, C. Gonzalez-Garcia, A. Ramiro, J. Ganan, Carbon, 2004, 42(11), 2285-2293. https://doi.org/10.1016/j.carbon.2004.05.007
  5. D. Bhagawan, S. Poodari, G. Ravi kumar, S. Golla, C. Anand, K.S. Banda, V. Himabindu, S. Vidyavathi, J. Mater. Cycles Waste Manag., 2015, 17(1), 185-193. https://doi.org/10.1007/s10163-014-0237-y
  6. S.W. Nahm, W.G. Shim, Y.-K. Park, S.C. Kim, Chem. Eng. J., 2012, 210, 500-509. https://doi.org/10.1016/j.cej.2012.09.023
  7. A.L. Cazetta, O.P. Junior, A.M.M. Vargas, A.P. da Silva, X. Zou, T. Asefa, V.C. Almeida, J. Anal. Appl. Pyrolysis, 2013, 101, 53-60. https://doi.org/10.1016/j.jaap.2013.02.013
  8. Y. Guo, E. Du, Energy Procedia, 2012, 17, 444-449. https://doi.org/10.1016/j.egypro.2012.02.118
  9. E. Caliskan, J.M. Bermudez, J.B. Parra, J.A. Menendez, M. Mahramanlioglu, C.O. Ania, J. Environ. Manage., 2012, 102, 134-140. https://doi.org/10.1016/j.jenvman.2012.02.016
  10. R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. CazorlaAmoros, E. Morallon, Energy & Fuels, 2010, 24(6), 3366-3372. https://doi.org/10.1021/ef901510c
  11. J.-Y. So, H.-R. Cho, Nucl. Eng. Technol., 2017, 49(4), 873-880. https://doi.org/10.1016/j.net.2017.01.020
  12. S.-G. Kim, H.-J. Son, J.-M. Jung, D.-C. Ryu, P.-J. Yoo, J. Environ. Sci. Int., 2015, 24(9), 1163-1170. https://doi.org/10.5322/JESI.2015.24.9.1163
  13. X. Han, E. Wishart, Y. Zheng, Can. J. Chem. Eng., 2014, 92(5), 884-891. https://doi.org/10.1002/cjce.21910
  14. A. Bagreev, H. Rahman, T.J. Bandosz, Carbon, 2001, 39(9), 1319-1326. https://doi.org/10.1016/S0008-6223(00)00266-9
  15. G.B. Lee, J.E. Park, S.Y. Hwang, J.H. Kim, S. Kim, H. Kim, B.U. Hong, Carbon Lett., 2019, 29(3), 263-272. https://doi.org/10.1007/s42823-019-00030-2
  16. C.-H. Lee, H.-N. Park, Y.-K. Lee, Y.S. Chung, S. Lee, H.-I. Joh, Electrochem. Commun., 2019, 106, 106516. https://doi.org/10.1016/j.elecom.2019.106516
  17. K.P. Gable, Adv. Organomet. Chem, 1997, 41, 127-161. https://doi.org/10.1016/S0065-3055(08)60438-4
  18. P.W. Atkins, Physical Chemistry, Oxford University Press, pp1024(data section), 1997.
  19. V.K. Chaudhri, B.E. John, S. Mishra, J. Pacheco, B. Porter, A. Spaulding, K-CAP'07: Proceedings of the Fourth International Conference on Knowledge Capture, 2007, 159-166.
  20. H.-I. Joh, H.K. Song, C.-H. Lee, J.-M. Yun, S.M. Jo, S. Lee, S.-I. Na, A.-T. Chien, S. Kumar, Carbon, 2014, 70, 308-312. https://doi.org/10.1016/j.carbon.2013.12.069
  21. L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang, Y. Huang, Energy Environ. Sci., 2013, 6(8), 2497-2504. https://doi.org/10.1039/c3ee41638k
  22. T.E. Kibona, Appl. Sci., 2019, 1(9), 1-11.
  23. D. Kim, K. Lee, M. Kim, Y. Kim, H. Lee, Electrochim. Acta., 2019, 300, 461-469. https://doi.org/10.1016/j.electacta.2019.01.141
  24. J.-J. Yang, Y.-J. Choi, H.-J. Kim, Y.-J. Yuk, S.-G. Park, J. Korean Electrochem. Soc., 2013, 16(2), 65-69. https://doi.org/10.5229/JKES.2013.16.2.65
  25. J. Shah, M.R. Jan, F. Mabood, M. Shahid, J. Chinese Chem. Soc., 2006, 53(5), 1085-1089. https://doi.org/10.1002/jccs.200600144
  26. S. Ouyang, D. Xiong, Y. Xie, L. Ma, Z. Hao, B. Sun, J. Yang, W. Chen, X. Li, Energy Sources, Part A Recover. Util. Environ. Eff., 2019, 1-17.
  27. S.-H. Pak, M.-J. Jeon, Y.-W. Jeon, Int. Biodeterior. Biodegradation, 2016, 113, 195-200. https://doi.org/10.1016/j.ibiod.2016.04.019
  28. S. Wang, Z. Zhu, Dye. Pigment, 2007, 75(2), 306-314. https://doi.org/10.1016/j.dyepig.2006.06.005
  29. V. Ruiz, C. Blanco, E. Raymundo-Pinero, V. Khomenko, F. Beguin, R. Santamaria, Electrochim. Acta., 2007, 52(4969), 90.
  30. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications., 1999.
  31. M. Uchimiya, A.T. Stone, Geochim. Cosmochim. Acta., 2006, 70(6), 1388-1401. https://doi.org/10.1016/j.gca.2005.11.020
  32. M. Quan, D. Sanchez, M.F. Wasylkiw, D.K. Smith, J. Am. Chem. Soc., 2007, 129(42), 12847-12856. https://doi.org/10.1021/ja0743083
  33. K. Chaitra, R. T. Vinny, P. Sivaraman, N. Reddy, C. Hu, K. Venkatesh, C. S. Vivek, N. Nagaraju, N. Kathyayini, J. Energy Chem., 2017, 26(1), 56-62. https://doi.org/10.1016/j.jechem.2016.07.003
  34. V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, J. Phys. Chem. C, 2007, 111(20), 7527-7531. https://doi.org/10.1021/jp067009t
  35. C. Kim, J.-W. Lee, J.-H. Kim, K.-S. Yang, Korean J. Chem. Eng., 2006, 23(4), 592-594. https://doi.org/10.1007/BF02706799
  36. C.-S. Yang, Y.S. Jang, H.K. Jeong, Curr. Appl. Phys., 2014, 14(12), 1616-1620. https://doi.org/10.1016/j.cap.2014.09.021
  37. S. Kumagai, M. Sato, D. Tashima, Electrochim. Acta., 2013, 114, 617-626. https://doi.org/10.1016/j.electacta.2013.10.060