DOI QR코드

DOI QR Code

Pt Deposits on Bi-Modified Pt Electrodes of Nanoparticle and Disk: A Contrasting Behavior of Formic Acid Oxidation

  • Lee, Hyein (Department of Chemistry, Chungnam National University) ;
  • Kim, Young Jun (Department of Chemistry, Chungnam National University) ;
  • Sohn, Youngku (Department of Chemistry, Chungnam National University) ;
  • Rhee, Choong Kyun (Department of Chemistry, Chungnam National University)
  • Received : 2021.02.05
  • Accepted : 2021.02.08
  • Published : 2021.08.28

Abstract

This work presents a contrasting behavior of formic acid oxidation (FAO) on the Pt and Bi deposits on different Pt substrates. Using irreversible adsorption method, Bi and Pt were sequentially deposited on Pt electrodes of nanoparticle (Pt NP) and disk (Pt disk). The deposited layers of Bi and Pt on the Pt substrates were characterized with X-ray photoelectron spectroscopy, transmission microscopy and scanning tunneling microscopy. The electrochemical behaviors and FAO enhancements of Pt NP and Pt disk with deposited Bi only (i.e., Bi/Pt NP and Bi/Pt disk), were similar to each other. However, additional deposition of Pt on Bi/Pt NP and Bi/Pt disk (i.e., Pt/Bi/Pt NP and Pt/Bi/Pt disk) changed the electrochemical behavior and FAO activity in different ways depending on the shapes of the Pt substrates. With Pt/Bi/Pt NP, the hydrogen adsorption was suppressed and the surface oxidation of Pt was enhanced; while with Pt/Bi/Pt disk, the opposite behavior was observed. This difference was interpreted as a stronger interaction between the deposited Bi and Pt on Pt NP than that on Pt disk. The FAO performance on Pt/Bi/Pt NP is much better than that on Pt/Bi/Pt disk, most likely due to the difference in the interaction between the deposited Pt and Bi depending on the shapes of Pt substrates. In designing FAO electrochemical catalysts using Pt and Bi, the shape of a Pt substrate was concluded to be critically considered.

Keywords

Acknowledgement

This work was supported by Chungnam National University (2019-2020).

References

  1. S. Enthaler, J. V. Langermann, T. Schmidt, Energy Environ. Sci., 2010, 3, 1207-1217. https://doi.org/10.1039/b907569k
  2. H.-R.M. Jhong, S. Ma, P.J.A. Kenis, Curr. Opin. Chem. Eng., 2013, 2(2), 191-199. https://doi.org/10.1016/j.coche.2013.03.005
  3. S. Zhang, P. Kang, T.J. Meyer, J. Am. Chem. Soc., 2014, 136(5), 1734-1737. https://doi.org/10.1021/ja4113885
  4. R. Kortlever, I. Peters, S. Koper, M.T.M. Koper, ACS Catal., 2015, 5(7), 3916-3923. https://doi.org/10.1021/acscatal.5b00602
  5. A.K. Singh, S. Singh, A. Kumar, Catal. Sci. Technol., 2016, 6, 12-40. https://doi.org/10.1039/C5CY01276G
  6. S. Ha, R. Larsen, Y. Zhu, R.I. Masel, Fuel Cells., 2004, 4(4), 337-343. https://doi.org/10.1002/fuce.200400052
  7. S. Ha, Z. Dunbar, R.I. Masel, J. Power Sources., 2006, 158(1), 129-136. https://doi.org/10.1016/j.jpowsour.2005.09.048
  8. W. Chen, J. Kim, S.H. Sun, S.W. Chen, Phys. Chem. Chem. Phys., 2006, 8(23), 2779-2786. https://doi.org/10.1039/b603045a
  9. X. Yu, P.G. Pickup, J. Power Sources., 2008, 182(1), 124-132. https://doi.org/10.1016/j.jpowsour.2008.03.075
  10. A.C. Chen, P. Holt-Hindle, Chem. Rev., 2010, 110(6), 3767-3804. https://doi.org/10.1021/cr9003902
  11. Y. Lu, S. Du, R. Steinberger-Wilckens, Appl. Catal. B., 2016, 199, 292-314. https://doi.org/10.1016/j.apcatb.2016.06.022
  12. A. Capon, R. Parsons, J. Electroanal. Chem., 1973, 45(2), 205-231. https://doi.org/10.1016/S0022-0728(73)80158-5
  13. C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, J. Power Sources., 2002, 111(1), 83-89. https://doi.org/10.1016/S0378-7753(02)00271-9
  14. J.D. Lovic, A.V. Tripkovic, S.L. Gojkovic, K.D. Popovic, D.V. Tripkovic, P. Olszewski, A. Kowal, J. Electroanal. Chem., 2005, 581(2), 294-302. https://doi.org/10.1016/j.jelechem.2005.05.002
  15. W. Gao, J.A. Keith, J. Anton, T. Jacob, J. Am. Chem. Soc., 2010, 132(51), 18377-18385. https://doi.org/10.1021/ja1083317
  16. A. Boronat-Gonzalez, E. Herrero, J. M. Feliu, Curr. Opin. Electrochem., 2017, 4(1), 26-31. https://doi.org/10.1016/j.coelec.2017.06.003
  17. X. Yu, P.G. Pickup, J. Appl. Electrochem., 2011, 41, 589-597. https://doi.org/10.1007/s10800-011-0267-2
  18. G. -R. Zhang, D. Zhao, Y. -Y. Feng, B. Zhang, D. S. Su, G. Liu, B. -Q. Xu, ACS Nano, 2012, 6(3), 2226-2236. https://doi.org/10.1021/nn204378t
  19. B. -W. Zhang, C. -L. He, Y. -X. Jiang, M. -H. Chen, Y. -Y. Li, L. Rao, S. -G. Sun, Electrochem. Commun., 2012, 25, 105-108. https://doi.org/10.1016/j.elecom.2012.09.007
  20. B. -W. Zhang, Y. -X. Jiang, J. Ren, X. -M Qu, G. -L. Xu, S. -G. Sun, Electrochim. Acta., 2015, 162, 254-262. https://doi.org/10.1016/j.electacta.2014.09.159
  21. C. -Y. Wang, Z.-Y. Yu, G. Li, Q. -T. Song, G. Li, C. -X. Luo, S. -Hu. Yin, B. -A. Lu, C. Xiao, B. -B. Xu, Z. -Y. Zhou, Na Tian, S. -G. Sun, ChemElectroChem., 2020, 7(1), 239-245. https://doi.org/10.1002/celc.201901818
  22. Y. Xie, N. Dimitrov, Appl. Catal. B., 2020, 263, 118366. https://doi.org/10.1016/j.apcatb.2019.118366
  23. L. Sui, W. An, C. K. Rhee, S. H. Hur, J. Electrochem. Sci. Technol., 2020, 11, 84-91. https://doi.org/10.33961/jecst.2019.00556
  24. M. Watanabe, M. Horiuchi, S. Motoo, J. Electroanal. Chem. Interfacial Electrochem., 1988, 250(1), 117-125. https://doi.org/10.1016/0022-0728(88)80197-9
  25. T. J. Schmidt, R. J. Behm, B. N. Grgur, N. M. Markovic, P. N. Ross, Langmuir., 2000, 16(21), 8159-8166. https://doi.org/10.1021/la000339z
  26. B. Peng, J. -Y. Wang, H. -X. Zhang, Y. -H. Lin, W. -B. Cai, Electrochem. Commun., 2009, 11(4), 831-833. https://doi.org/10.1016/j.elecom.2009.02.004
  27. X. Yu, P. G. Pickup, Electrochim. Acta., 2010, 55(24), 7354-7361. https://doi.org/10.1016/j.electacta.2010.07.019
  28. B. Peng, H. -F. Wang, Z. -P. Liu, W. -B. Cai, J. Phys. Chem. C., 2010, 114(7), 3102-3107. https://doi.org/10.1021/jp910497n
  29. M. B. -Brzezinska, T. quczak, J. Stelmach, R. Holze, J. Power Sources., 2014, 251, 30-37. https://doi.org/10.1016/j.jpowsour.2013.11.027
  30. A. F.-Vilaplana, J. V. P. -Rondon, J. M. Feliu, E. Herrero, ACS Catal., 2015, 5(2), 645-654. https://doi.org/10.1021/cs501729j
  31. A.M. Mohammad, G.A. El-Nagar, I.M. Al-Akraa, M.S. El-Deab, B.E. El-Anadouli, Int. J. Hydrogen Energy, 2015, 40(24), 7808-7816. https://doi.org/10.1016/j.ijhydene.2014.11.108
  32. J. K. Yoo, M. Choi, S. Yang, B. Shong, H.-S. Chung, Y. Sohn, C. K. Rhee, Electrochim. Acta, 2018, 273, 307-317. https://doi.org/10.1016/j.electacta.2018.04.071
  33. H. Lee, Y. Sohn, C. K. Rhee, Langmuir, 2020, 36(19), 5359-5368. https://doi.org/10.1021/acs.langmuir.0c00755
  34. M. Choi, C. -Y. Ahn, H. Lee, J. K. Kim, S. -H. Oh, W. Hwang, S. Yang, J. Kim, O. -H. Kim, I. Choi, Y. -E. Sung, Y. -H. Cho, C. K. Rhee, W. Shin, Appl. Catal. B., 2019, 253(2), 187-195. https://doi.org/10.1016/j.apcatb.2019.04.059
  35. J. Clavilier, J. M. Feliu, A. Aldaz, J. Electroanal. Chem. Interfacial Electrochem., 1988, 243(2), 419-433. https://doi.org/10.1016/0022-0728(88)80045-7
  36. J. Kim, C.K. Rhee, Electrochem. Commun., 2010, 12(12), 1731-1733. https://doi.org/10.1016/j.elecom.2010.10.008
  37. A. Lopez-Cudero, F.J. Vidal-Iglesias, J. Solla-Gullon, E. Herrero, A. Aldaz, J.M. Feliu, Phys. Chem. Chem. Phys., 2009, 11, 416. https://doi.org/10.1039/B814072C
  38. J. K. Norskov, F. Ablid-Pedersen, F. Studt, T. Bligaard, Proc. Natl. Acad. Sci. U. S. A., 2011, 108(3), 937-943. https://doi.org/10.1073/pnas.1006652108
  39. J. K. Yoo, C. K. Rhee, Electrochim. Acta, 2016, 216, 16-23. https://doi.org/10.1016/j.electacta.2016.09.007