DOI QR코드

DOI QR Code

An investigation of mechanical properties of kidney tissues by using mechanical bidomain model

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Elbahar, Mohamed (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Ahmad, Monzoor (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Elimame, Elaloui (Laboratory of Materials Applications in Environment, Water and Energy LR21ES15, Faculty of Sciences, University of Gafsa) ;
  • Zaman, Shakeel ul (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2021.02.26
  • 심사 : 2021.07.06
  • 발행 : 2021.08.25

초록

In this study, mechanical bidomain model is used to study the mechanical behavior of kidney tissues. This model has been used widely to study cardiac tissue and cell colony. On recognizing same structural and somehow same physiological relationship between cardiac tissue and kidney tissue, the displacements in different regions of kidney and the integrins, i. e., nephron coupling the intracellular medulla and extracellular cortex is analyzed. The mechanical Bidomain model provides a microscopic description of kidney tissue mechanics and also predicts the microscopic coupling of extracellular cells region of kidney tissue, i.e., cortex and the intracellular cells region medulla of kidney.

키워드

과제정보

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.

참고문헌

  1. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. http://doi.org/10.12989/sss.2016.18.6.1125.
  2. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. http://doi.org/10.12989/sem.2016.59.3.579.
  3. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
  4. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  5. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. http://doi.org/10.12989/anr.2018.6.1.039.
  6. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-243. http://doi.org/10.12989/anr.2018.6.3.219.
  7. Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
  8. Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. http://doi.org/10.12989/scs.2020.34.4.615.
  9. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K., Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. http://doi.org/10.12989/anr.2019.7.6.443.
  10. Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Method Appl. Sci. https://doi.org/10.1002/mma.7069.
  11. Eaton, H. (1992), "Electric field induced in a spherical volume conductor from arbitrary coils: Application to magnetic stimulation and MEG", Med. Biol. Eng. Comput., 30(4), 433-440. https://doi.org/10.1007/BF02446182.
  12. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porositydependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  13. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  14. Galappaththige, S.K., Gray, R.A. and Roth, B.J. (2017), "Cardiac strength-interval curves calculated using a bidomain tissue with a parsimonious ionic current", PloS one, 12(2), e0171144. https://doi.org/10.1371/journal.pone.
  15. Geselowitz, D.B. and Miller, W. (1983), "A bidomain model for anisotropic cardiac muscle", Ann. Biomed. Eng., 11(3-4), 191-206. https://doi.org/10.1007/BF02363286.
  16. Gonzalez-Rosende, E., Jones, R.A., Sepulveda-Arques, J. and Zaballos-Garcia, E. (1988), "Pyrrole Studies. Part 40.1 Synthesis of 2-and 3-Substitoted 1-Methylindoles from Vinylpyrroles", Synthetic Commun., 18(14), 1669-1678. https://doi.org/10.1081/SCC-120003638.
  17. Henriquez, C.S. and Ying, W. (2009), The Bidomain Model of Cardiac Tissue: From Microscale to Macroscale Cardiac Bioelectric Therapy in Cardiac Bioelectric Therapy, Springer, New York, U.S.A.
  18. Karami, B. and Janghorban, M. (2020), "On the mechanics of functionally graded nanoshells", Int. J. Eng. Sci., 153, 103309. https://doi.org/10.1016/j.ijengsci.2020.103309.
  19. Krassowska, W. and Neu, J.C. (1994), "Effective boundary conditions for syncytial tissues", IEEE T. Biomed. Eng., 41(2), 143-150. http://doi.org/10.1109/10.284925.
  20. Leibovic, K.N. (2013), Information Processing in The Nervous System: Proceedings of a Symposium held at the State University of New York at Buffalo 21st-24th October, 1968, Springer Science & Business Media., Berlin, Germany.
  21. Nazemnezhad, R. and Shokrollahi, H. (2020), "Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect", Steel Compos. Struct., 35(3), 449-462. http://doi.org/10.12989/scs.2020.35.3.449
  22. Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59-68. http://doi.org/10.12989/anr.2020.8.1.059.
  23. Neu, J. and Krassowska, W. (1993), "Homogenization of syncytial tissues. Critical reviews in biomedical engineering", 21(2), 137-199.
  24. Neunlist, M. and Tung, L. (1995), "Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation", Biophys J., 68(6), 2310-2322. http://doi.org/10.1016/s0006-3495(95)80413-3.
  25. Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013
  26. Pathmanathan, P., Bernabeu, M.O., Bordas, R., Cooper, J., Garny, A., Pitt-Francis, J.M., Whiteley, J.P. and Gavaghan, D.J. (2010), "A numerical guide to the solution of the bidomain equations of cardiac electrophysiology", Prog. Biophysics Mol. Bio., 102(2-3), 136-155. http://doi.org/10.1016/j.pbiomolbio.2010.05.006.
  27. Prior, P. and Roth, B.J. (2008), "Calculation of optical signal using three-dimensional bidomain/diffusion model reveals distortion of the transmembrane potential", Biophys. J., 95(4), 2097-2102. http://doi.org/10.1529/biophysj.107.127852.
  28. Puwal, S. and Roth, B.J. (2010), "Mechanical bidomain model of cardiac tissue", Phys. Rev. E, 82(4), 041904. http://doi.org/10.1103/PhysRevE.82.041904.
  29. Roth, B.J. (1991), "Action potential propagation in a thick strand of cardiac muscle", Circ. Res., 68(1), 162-173. https://doi.org/10.1161/01.
  30. Roth, B.J. (1992), "How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle", J. Math. Biol., 30(6), 633-646. https://doi.org/10.1007/BF00175610.
  31. Roth, B.J. (1996), "Strength-interval curves for cardiac tissue predicted using the bidomain model", J. Cardiovasc. Electr., 7(8), 722-737. http://doi.org/10.1111/j.1540-8167.1996.tb00580.x.
  32. Roth, B.J. (2013), "The mechanical bidomain model: A review", Int. Scholar. Res. Notice, 863689. http://doi.org/10.1155/2013/863689.
  33. Roth, B.J. (2016), "A mathematical model of mechanotransduction", arXiv:1611.08287, Cornell University, New York, U.S.A.
  34. Roth, B.J. and Basser, P.J. (2009), "Mechanical model of neural tissue displacement during Lorentz effect imaging", Magn. Reson. Med., 61(1), 59-64. http://doi.org/10.1002/mrm.21772.
  35. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano. Res., 7(4), 265-275. http://doi.org/10.12989/anr.2019.7.4.265.
  36. Sepulveda, N.G., Roth, B.J. and Wikswo Jr, J.P. (1989), "Current injection into a two-dimensional anisotropic bidomain", Biophys. J., 55(5), 987-999. http://doi.org/10.1016/S0006-3495(89)82897-8.
  37. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Sizedependent vibration analysis of laminated composite plates", Adv. Nano. Res., 7(5), 337-349. http://doi.org/10.12989/anr.2019.7.5.337.
  38. Sharma, K. and Roth, B.J. (2014), "How compressibility influences the mechanical bidomain model", Biomath, 3(2), 1411171. http://doi.org/10.11145/j.biomath.2014.11.171.
  39. Supraja, N., Tollamadugu, N.V.K.V.P. and Adam, S. (2016), "Phytogenic silver nanoparticles (Alstonia scholaris) incorporated with epoxy coating on PVC materials and their biofilm degradation studies", Adv. Nano. Res., 4(4), 281-284. http://doi.org/10.12989/anr.2016.4.4.281
  40. Trayanova, N.A., Roth, B.J. and Malden, L.J. (1993), "The response of a spherical heart to a uniform electric field: A bidomain analysis of cardiac stimulation", IEEE T. Biomed. Eng., 40(9), 899-908. http://doi.org/10.1109/10.245611.
  41. Trayanova, N. and Plank, G. (2009), Bidomain Model of Defibrillation in Cardiac Bioelectric Therapy, Springer. New York, U.S.A.
  42. Trayanova, N., Plank, G. and Rodriguez, B. (2006), "What have we learned from mathematical models of defibrillation and postshock arrhythmogenesis? Application of bidomain simulations", Heart Rhythm, 3(10), 1232. http://doi.org/10.1016/j.hrthm.2006.04.
  43. Tung, L. (1978), "A bi-domain model for describing ischemic myocardial dc potentials", Ph.D. Dissertation, Massachusetts Institute of Technology, Massachusetts, U.S.A.
  44. Wikswo Jr, J.P., Lin, S.F. and Abbas, R.A. (1995), "Virtual electrodes in cardiac tissue: A common mechanism for anodal and cathodal stimulation", Biophys. J., 69(6), 2195-2210. http://doi.org/10.1016/S0006-3495(95)80115-3.
  45. Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. http://doi.org/10.12989/scs.2020.34.2.215.