과제정보
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.
참고문헌
- Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. http://doi.org/10.12989/sss.2016.18.6.1125.
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. http://doi.org/10.12989/sem.2016.59.3.579.
- Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. http://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-243. http://doi.org/10.12989/anr.2018.6.3.219.
- Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
- Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. http://doi.org/10.12989/scs.2020.34.4.615.
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K., Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. http://doi.org/10.12989/anr.2019.7.6.443.
- Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Method Appl. Sci. https://doi.org/10.1002/mma.7069.
- Eaton, H. (1992), "Electric field induced in a spherical volume conductor from arbitrary coils: Application to magnetic stimulation and MEG", Med. Biol. Eng. Comput., 30(4), 433-440. https://doi.org/10.1007/BF02446182.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porositydependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
- Galappaththige, S.K., Gray, R.A. and Roth, B.J. (2017), "Cardiac strength-interval curves calculated using a bidomain tissue with a parsimonious ionic current", PloS one, 12(2), e0171144. https://doi.org/10.1371/journal.pone.
- Geselowitz, D.B. and Miller, W. (1983), "A bidomain model for anisotropic cardiac muscle", Ann. Biomed. Eng., 11(3-4), 191-206. https://doi.org/10.1007/BF02363286.
- Gonzalez-Rosende, E., Jones, R.A., Sepulveda-Arques, J. and Zaballos-Garcia, E. (1988), "Pyrrole Studies. Part 40.1 Synthesis of 2-and 3-Substitoted 1-Methylindoles from Vinylpyrroles", Synthetic Commun., 18(14), 1669-1678. https://doi.org/10.1081/SCC-120003638.
- Henriquez, C.S. and Ying, W. (2009), The Bidomain Model of Cardiac Tissue: From Microscale to Macroscale Cardiac Bioelectric Therapy in Cardiac Bioelectric Therapy, Springer, New York, U.S.A.
- Karami, B. and Janghorban, M. (2020), "On the mechanics of functionally graded nanoshells", Int. J. Eng. Sci., 153, 103309. https://doi.org/10.1016/j.ijengsci.2020.103309.
- Krassowska, W. and Neu, J.C. (1994), "Effective boundary conditions for syncytial tissues", IEEE T. Biomed. Eng., 41(2), 143-150. http://doi.org/10.1109/10.284925.
- Leibovic, K.N. (2013), Information Processing in The Nervous System: Proceedings of a Symposium held at the State University of New York at Buffalo 21st-24th October, 1968, Springer Science & Business Media., Berlin, Germany.
- Nazemnezhad, R. and Shokrollahi, H. (2020), "Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect", Steel Compos. Struct., 35(3), 449-462. http://doi.org/10.12989/scs.2020.35.3.449
- Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59-68. http://doi.org/10.12989/anr.2020.8.1.059.
- Neu, J. and Krassowska, W. (1993), "Homogenization of syncytial tissues. Critical reviews in biomedical engineering", 21(2), 137-199.
- Neunlist, M. and Tung, L. (1995), "Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation", Biophys J., 68(6), 2310-2322. http://doi.org/10.1016/s0006-3495(95)80413-3.
- Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013
- Pathmanathan, P., Bernabeu, M.O., Bordas, R., Cooper, J., Garny, A., Pitt-Francis, J.M., Whiteley, J.P. and Gavaghan, D.J. (2010), "A numerical guide to the solution of the bidomain equations of cardiac electrophysiology", Prog. Biophysics Mol. Bio., 102(2-3), 136-155. http://doi.org/10.1016/j.pbiomolbio.2010.05.006.
- Prior, P. and Roth, B.J. (2008), "Calculation of optical signal using three-dimensional bidomain/diffusion model reveals distortion of the transmembrane potential", Biophys. J., 95(4), 2097-2102. http://doi.org/10.1529/biophysj.107.127852.
- Puwal, S. and Roth, B.J. (2010), "Mechanical bidomain model of cardiac tissue", Phys. Rev. E, 82(4), 041904. http://doi.org/10.1103/PhysRevE.82.041904.
- Roth, B.J. (1991), "Action potential propagation in a thick strand of cardiac muscle", Circ. Res., 68(1), 162-173. https://doi.org/10.1161/01.
- Roth, B.J. (1992), "How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle", J. Math. Biol., 30(6), 633-646. https://doi.org/10.1007/BF00175610.
- Roth, B.J. (1996), "Strength-interval curves for cardiac tissue predicted using the bidomain model", J. Cardiovasc. Electr., 7(8), 722-737. http://doi.org/10.1111/j.1540-8167.1996.tb00580.x.
- Roth, B.J. (2013), "The mechanical bidomain model: A review", Int. Scholar. Res. Notice, 863689. http://doi.org/10.1155/2013/863689.
- Roth, B.J. (2016), "A mathematical model of mechanotransduction", arXiv:1611.08287, Cornell University, New York, U.S.A.
- Roth, B.J. and Basser, P.J. (2009), "Mechanical model of neural tissue displacement during Lorentz effect imaging", Magn. Reson. Med., 61(1), 59-64. http://doi.org/10.1002/mrm.21772.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano. Res., 7(4), 265-275. http://doi.org/10.12989/anr.2019.7.4.265.
- Sepulveda, N.G., Roth, B.J. and Wikswo Jr, J.P. (1989), "Current injection into a two-dimensional anisotropic bidomain", Biophys. J., 55(5), 987-999. http://doi.org/10.1016/S0006-3495(89)82897-8.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Sizedependent vibration analysis of laminated composite plates", Adv. Nano. Res., 7(5), 337-349. http://doi.org/10.12989/anr.2019.7.5.337.
- Sharma, K. and Roth, B.J. (2014), "How compressibility influences the mechanical bidomain model", Biomath, 3(2), 1411171. http://doi.org/10.11145/j.biomath.2014.11.171.
- Supraja, N., Tollamadugu, N.V.K.V.P. and Adam, S. (2016), "Phytogenic silver nanoparticles (Alstonia scholaris) incorporated with epoxy coating on PVC materials and their biofilm degradation studies", Adv. Nano. Res., 4(4), 281-284. http://doi.org/10.12989/anr.2016.4.4.281
- Trayanova, N.A., Roth, B.J. and Malden, L.J. (1993), "The response of a spherical heart to a uniform electric field: A bidomain analysis of cardiac stimulation", IEEE T. Biomed. Eng., 40(9), 899-908. http://doi.org/10.1109/10.245611.
- Trayanova, N. and Plank, G. (2009), Bidomain Model of Defibrillation in Cardiac Bioelectric Therapy, Springer. New York, U.S.A.
- Trayanova, N., Plank, G. and Rodriguez, B. (2006), "What have we learned from mathematical models of defibrillation and postshock arrhythmogenesis? Application of bidomain simulations", Heart Rhythm, 3(10), 1232. http://doi.org/10.1016/j.hrthm.2006.04.
- Tung, L. (1978), "A bi-domain model for describing ischemic myocardial dc potentials", Ph.D. Dissertation, Massachusetts Institute of Technology, Massachusetts, U.S.A.
- Wikswo Jr, J.P., Lin, S.F. and Abbas, R.A. (1995), "Virtual electrodes in cardiac tissue: A common mechanism for anodal and cathodal stimulation", Biophys. J., 69(6), 2195-2210. http://doi.org/10.1016/S0006-3495(95)80115-3.
- Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. http://doi.org/10.12989/scs.2020.34.2.215.