참고문헌
- Abazid, M.A. (2019), "The Nonlocal Strain Gradient Theory for Hygrothermo-Electromagnetic Effects on Buckling, Vibration and Wave Propagation in Piezoelectromagnetic Nanoplates", Int. J. Appl. Mech., 11(7), 1950067. https://doi.org/10.1142/S1758825119500674
- Akgoz, B. and Civalek, O. (2018), "Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment", Compos. Part B: Eng., 150, 68-77. https://doi.org/10.1016/j.compositesb.2018.05.049
- Allahkarami, F. and Nikkhah-Bahrami, M. (2018), "The effects of agglomerated CNTs as reinforcement on the size-dependent vibration of embedded curved microbeams based on modified couple stress theory", Mech. Adv. Mater. Struct., 25(12), 995-1008. https://doi.org/10.1080/15376494.2017.1323144
- Amir, S., Khorasani, M. and BabaAkbar-Zarei, H. (2018), "Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory", J. Sandw. Struct. Mater., 109963621879538. https://doi.org/10.1177/1099636218795385
- Amir, S., Arshid, E. and Ghorbanpour Arani, M.R. (2019a), "Sizedependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multiphysical pre loads", Smart Struct. Syst., 23(5), 429-447. https://doi.org/10.12989/sss.2019.23.5.429
- Amir, S., Soleimani-Javid, Z. and Arshid, E. (2019b), "Sizedependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT", ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 99(9), 1-21. https://doi.org/10.1002/zamm.201800334
- Amir, S., Bidgoli, E.M.R. and Arshid, E. (2020a), "Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT", Mech. Adv. Mater. Struct., 27(8), 605-619. https://doi.org/10.1080/15376494.2018.1487612
- Amir, S., Vossough, A.R., Vossough, H. and Arshid, E. (2020b), "Nonlinear magneto-nonlocal vibration analysis of coupled piezoelectric micro-plates reinforced with agglomerated CNTs", Mech. Adv. Compos. Struct., 7(1), 109-119. https://doi.org/10.22075/macs.2019.16632.1185
- Amir, S., Arshid, E. and Khoddami Maraghi, Z. (2020c), "Free vibration analysis of magneto-rheological smart annular threelayered plates subjected to magnetic field in viscoelastic medium", Smart Struct. Syst., 25(5), 581-592. https://doi.org/10.12989/sss.2020.25.5.581
- Amir, S., Arshid, E., Khoddami Maraghi, Z., Loghman, A. and Ghorbanpour Arani, A. (2020d), "Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate", JVC/J. Vib. Control, 26(17-18), 1523-1537. https://doi.org/10.1177/1077546319899203
- Amir, S., Arshid, E., Rasti-Alhosseini, S.M.A. and Loghman, A. (2020e), "Quasi-3D tangential shear deformation theory for size-dependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment", J. Thermal Stress., 43(2), 133-156. https://doi.org/10.1080/01495739.2019.1660601
- Arefi, M., Mohammad-Rezaei Bidgoli, E. and Rabczuk, T. (2019), "Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT", Thin-Wall. Struct., 142, 444-459. https://doi.org/10.1016/j.tws.2019.04.054
- Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin-Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007
- Arshid, E., Kiani, A. and Amir, S. (2019a), "Magneto-electroelastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(10), 2140-2159. https://doi.org/10.1177/1464420719832626
- Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019b), "The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., Int. J., 70(1), 97-112. https://doi.org/10.12989/sem.2019.70.1.097
- Arshid, E., Kiani, A., Amir, S. and Zarghami Dehaghani, M. (2019c), "Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermoelastic circular plates", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(16), 5659-5675. https://doi.org/10.1177/0954406219850598
- Arshid, E., Amir, S. and Loghman, A. (2020a), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656
- Arshid, E., Amir, S. and Loghman, A. (2020b), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 109963622095502. https://doi.org/10.1177/1099636220955027
- Behdinan, K., Moradi-Dastjerdi, R., Safaei, B., Qin, Z., Chu, F. and Hui, D. (2020), "Graphene and CNT impact on heat transfer response of nanocomposite cylinders", Nanotechnol. Reviews, 9(1), 41-52. https://doi.org/10.1515/ntrev-2020-0004
- Brush, D.O., Almroth, B.O. and Hutchinson, J.W. (1975), "Buckling of bars, plates, and shells", J. Appl. Mech., 42, 911. https://doi.org/10.1115/1.3423755
- Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/GAE.2020.21.5.471
- Cinefra, M., Valvano, S. and Carrera, E. (2015), "A layer-wise MITC9 finite element for the free-vibration analysis of plates with piezo-patches", Int. J. Smart Nano Mater., 6(2), 85-104. https://doi.org/10.1080/19475411.2015.1037377
- Duc, N.D. (2018), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266
- Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8(3), 203-214. https://doi.org/10.12989/anr.2020.8.3.203
- Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media. https://doi.org/10.1007/b97697
- Eyvazian, A., Shahsavari, D. and Karami, B. (2020), "On the dynamic of graphene reinforced nanocomposite cylindrical shells subjected to a moving harmonic load", Int. J. Eng. Sci., 154, 103339. https://doi.org/10.1016/j.ijengsci.2020.103339
- Fattahi, A.M., Safaei, B. and Moaddab, E. (2019a), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281
- Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019b), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 1-13. https://doi.org/10.1140/epjp/i2019-12912-7
- Ferreira, A.J.M., Fasshauer, G.E., Batra, R.C. and Rodrigues, J.D. (2008), "Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter", Compos. Struct., 86(4), 328-343. https://doi.org/10.1016/J.COMPSTRUCT.2008.07.025
- Garcia-Macias, E., Rodriguez-Tembleque, L. and Saez, A. (2018), "Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates", Compos. Struct., 186, 123-138. https://doi.org/10.1016/j.compstruct.2017.11.076
- Habibi, M., Taghdir, A. and Safarpour, H. (2019), "Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets", Compos. Part B: Eng., 175, 107125. https://doi.org/10.1016/j.compositesb.2019.107125
- Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56. https://doi.org/10.1038/354056a0
- Karami, B. and Shahsavari, D. (2020), "On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets", Comput. Methods Appl. Mech. Eng., 359, 112767. https://doi.org/10.1016/j.cma.2019.112767
- Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82-83, 499-512. https://doi.org/10.1016/j.ast.2018.10.001
- Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
- Karami, B., Janghorban, M. and Tounsi, A. (2019b), "On exact wave propagation analysis of triclinic material using threedimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487
- Karami, B., Janghorban, M. and Tounsi, A. (2019c), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019d), "Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates", Mater. Res. Express, 6(9), 0950a9. https://doi.org/10.1088/2053-1591/ab3474
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019e), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089
- Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019f), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
- Karami, B., Gheisari, P., Nazemosadat, S.M.R., Akbari, P., Shahsavari, D., Naghizadeh, M. and Naghizadeh, M. (2020), "Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates", Struct. Eng. Mech., 74(6), 809-819. https://doi.org/10.12989/sem.2020.74.6.809.
- Kiani, Y. (2016), "Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method", Compos. Part B: Eng., 105, 176-187. https://doi.org/10.1016/J.COMPOSITESB.2016.09.001
- Kolahdouzan, F., Gorbanpour Arani, A. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRCmicro sandwich plate", Steel Compos. Struct., 26(3), 273-287. http://dx.doi.org/10.12989/scs.2018.26.3.273
- Li, Q., Wu, D., Gao, W., Tin-Loi, F., Liu, Z. and Cheng, J. (2019), "Static bending and free vibration of organic solar cell resting on Winkler-Pasternak elastic foundation through the modified strain gradient theory", Eur. J. Mech., A/Solids, 78, 103852. https://doi.org/10.1016/j.euromechsol.2019.103852
- Li, Q., Wu, D., Gao, W. and Tin-Loi, F. (2020), "Size-dependent instability of organic solar cell resting on Winkler-Pasternak elastic foundation based on the modified strain gradient theory", Int. J. Mech. Sci., 177, 105306. https://doi.org/10.1016/j.ijmecsci.2019.105306
- Lin, H.G., Cao, D.Q. and Xu, Y.Q. (2018), "Vibration, buckling and aeroelastic analyses of functionally graded multilayer graphene-nanoplatelets-reinforced composite plates embedded in piezoelectric layers", Int. J. Appl. Mech., 10(3), 1850023. https://doi.org/10.1142/S1758825118500230
- Liu, H., Wu, H. and Lyu, Z. (2020), "Nonlinear resonance of FG multilayer beam-type nanocomposites: Effects of graphene nanoplatelet-reinforcement and geometric imperfection", Aerosp. Sci. Technol., 98, 105702. https://doi.org/10.1016/j.ast.2020.105702
- Loghman, A. and Cheraghbak, A. (2018), "Agglomeration effects on electro-magneto-thermo elastic behavior of nano-composite piezoelectric cylinder", Polym. Compos., 39(5), 1594-1603. https://doi.org/10.1002/pc.24104
- Mao, J.J. and Zhang, W. (2019), "Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces", Compos. Struct., 216, 392-405. https://doi.org/10.1016/j.compstruct.2019.02.095
- Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A.A., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293
- Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020a), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087
- Mirjavadi, S.S., Forsat, M., Barati, M.R., Hamouda, A., Mirjavadi, S.S., Forsat, M. and Hamouda, A. (2020b), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-677. https://doi.org/10.12989/scs.2020.35.6.765
- Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R., Hamouda, A.M.S. and Hamouda, A.M.S. (2020c), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047
- Mirsalehi, M., Azhari, M. and Amoushahi, H. (2017), "Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method", Eur. J. Mech., A/Solids, 61, 1-13. https://doi.org/10.1016/j.euromechsol.2016.08.008
- Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels", Compos. Struct., 142, 45-56. https://doi.org/10.1016/J.COMPSTRUCT.2015.12.071
- Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683
- Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017), "Geometrical nonlinear free vibration responses of FGCNT reinforced composite annular sector plates integrated with piezoelectric layers", Compos. Struct., 171, 100-112. https://doi.org/10.1016/J.COMPSTRUCT.2017.01.048
- Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V. and Firsov, A.A. (2004), "Electric field in atomically thin carbon films", Science, 306(5696), 666-669. https://doi.org/10.1126/science.1102896
- Paul, R., Kumbhakar, P. and Mitra, A.K. (2013), "A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite", Adv. Nano Res., 1(2), 71-82. https://doi.org/10.12989/anr.2013.1.2.071
- Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A. and Tounsi, A. (2020), "Effects of hygro-thermomechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311
- Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. http://dx.doi.org/10.12989/scs.2020.35.5.659
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
- Safarpour, H., Esmailpoor Hajilak, Z. and Habibi, M. (2019), "A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation", Int. J. Mech. Mater. Des., 15(3), 569-583. https://doi.org/10.1007/s10999-018-9431-8
- Sahmani, S. and Aghdam, M.M. (2017a), "Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 132(11), 1-17. https://doi.org/10.1140/epjp/i2017-11773-4
- Sahmani, S. and Aghdam, M.M. (2017b), "Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments", Arch. Civil Mech. Eng., 17(3), 623-638. https://doi.org/10.1016/j.acme.2017.01.004
- Sahmani, S., Aghdam, M.M. and Bahrami, M. (2016), "Sizedependent axial buckling and postbuckling characteristics of cylindrical nanoshells in different temperatures", Int. J. Mech. Sci., 107, 170-179. https://doi.org/10.1016/j.ijmecsci.2016.01.014
- Sahmani, S., Fattahi, A.M. and Ahmed, N.A. (2019), "Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams", Eng. Comput., 35(4), 1173-1189. https://doi.org/10.1007/s00366-018-0657-8
- Selim, B.A., Zhang, L.W. and Liew, K.M. (2016), "Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy's higher-order shear deformation theory", Compos. Struct., 156, 276-290. https://doi.org/10.1016/j.compstruct.2015.10.026
- Shen, H.-S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B: Eng., 119, 67-78. https://doi.org/10.1016/J.COMPOSITESB.2017.03.020
- Shingare, K.B. and Kundalwal, S.I. (2019), "Static and dynamic response of graphene nanocomposite plates with flexoelectric effect", Mech. Mater., 134, 69-84. https://doi.org/10.1016/j.mechmat.2019.04.006
- Sobhy, M. (2018), "Magneto-electro-thermal bending of FG-graphene reinforced polymer doubly-curved shallow shells with piezoelectromagnetic faces", Compos. Struct., 203, 844-860. https://doi.org/10.1016/j.compstruct.2018.07.056
- Talebizadehsardari, P., Eyvazian, A., Asmael, M., Karami, B., Shahsavari, D., and Mahani, R.B. (2020), "Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes", Thin Wall. Struct., 157, 107139. https://doi.org/10.1016/j.tws.2020.107139
- Thai, C.H., Ferreira, A.J.M. and Phung-Van, P. (2019), "Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory", Compos. Part B: Eng., 169, 174-188. https://doi.org/10.1016/j.compositesb.2019.02.048
- Van Thu, P. and Duc, N.D. (2016), "Nonlinear stability analysis of imperfect three-phase sandwich laminated polymer nanocomposite panels resting on elastic foundations in thermal environments", VNU J. Sci.: Math. Phys., 32(1), 20-36. http://js.vnu.edu.vn/index.php/MaP/article/view/423
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/J.COMPSTRUCT.2018.03.090
- Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin-Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006
- Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory", Adv. Nano Res., 4(4), 309-326. https://doi.org/10.12989/anr.2016.4.4.309
- Zenkour, A.M. and Hafed, Z.S. (2020), "Bending response of functionally graded piezoelectric plates using a two variable shear deformation theory", Adv. Aircr. Spacecr. Sci., 7(2), 115-134. https://doi.org/10.12989/aas.2020.7.2.115
- Zhong, R., Wang, Q., Tang, J., Shuai, C. and Qin, B. (2018), "Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates", Compos. Struct., 194, 49-67. https://doi.org/10.1016/j.compstruct.2018.03.104
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010