과제정보
본 논문은 선박해양플랜트연구소 주요사업 "극한환경상태의 선박성능 평가기술 개발"로 수행된 결과입니다. (PES3910)
참고문헌
- Carlton, J., 2007. Marine propellers and propulsion. 2nd Ed. Butterworth-Heinemann.
- Holtrop, J., 1984. A statistical re-analysis of resistance and propulsion data. International Shipbuilding Progress, 31, pp.272-276.
- Holtrop, J. & Mennen, G.G.J., 1978. A statistical power prediction method. International Shipbuilding Progress, 25, pp.253. https://doi.org/10.3233/ISP-1978-2529001
- Holtrop, J. & Mennen, G.G.J., 1982. An approximate power prediction method. International Shipbuilding Progress, 29, pp.166-170. https://doi.org/10.3233/ISP-1982-2933501
- ITTC, 2017. 1978 ITTC performance prediction method (revision 04). ITTC-Recommended Procedures and Guidelines, 7.5-02 03-01.4, pp.1-15.
- Kim, Y.C. et al., 2019. Prediction of residual resistance coefficient of low-speed full ships using hull form variables and model test results. Journal of the Society of Naval Architects of Korea, 56(5), pp.448-457.
- Kim, Y.C. et al., 2020. Prediction of residual resistance coefficient of low-speed full ships using hull form variables and machine learning approaches. Journal of the Society of Naval Architects of Korea, 57(6), pp.311-321.
- Raschka, S., & Mirjalili, V., 2019. Python machine learning. 2nd Ed. Gilbut Publishing co., Ltd. www.scikit-learn.org