DOI QR코드

DOI QR Code

가정용 로봇의 피드백 움직임과 접근-회피 행동에 따른 사용자 경험 연구: 작업 수행 상황을 중심으로

A Study of User Experience Based on Feedback Positioning of Home Robots and Approach-Avoidance Behaviors: Focused on the Context of Tasks

  • 나경화 (연세대학교 정보대학원 UX전공) ;
  • 김환주 (연세대학교 정보대학원 UX전공) ;
  • 강현민 (연세대학교 정보대학원)
  • Na, Gyoung-Hwa (Department of UX, Graduate School of Information, Yonsei University) ;
  • Kim, Hwan-Ju (Department of UX, Graduate School of Information, Yonsei University) ;
  • Kang, Hyun-Min (Graduate School of Information, Yonsei University)
  • 투고 : 2021.06.16
  • 심사 : 2021.08.20
  • 발행 : 2021.08.28

초록

팬데믹으로 인해 생활의 중심이 집으로 이동함에 따라 집을 다양한 활동에 최적화된 공간으로 만들어줄 수 있는 가정용 로봇의 개발이 활발하다. 이 연구는 로봇이 작업을 수행하는 상황에 따라 피드백을 하기 위한 접근 또는 회피 움직임이 사용자 경험에 미치는 효과를 확인하고자 하였다. 작업 수행 상황과 움직임 조건에 따라 6가지 시나리오를 구성하여, 각 조건에 따른 호감도, 인지된 지능, 친밀감, 부정적 태도, 행동 예측가능성을 측정하였다. 실험 결과, 작업 수행 상황에서는 인지된 지능과 친밀감, 행동 예측가능성에서 주효과가 나타났고, 움직임 조건에서는 호감도, 인지된 지능, 친밀감에서 주효과가 나타났다. 상호작용 효과는 호감도와 인지된 지능에서만 나타났다. 결론적으로 로봇의 움직임에도 접근-회피 경험을 적용할 수 있고, 회피에 따른 부정적 효과를 확인할 수 있었다.

Due to pandemic situations, the development of home robots that can make the house an optimized space for various activities is active. This study aims to confirm the effectiveness of approach or avoidance behavior for feedback positioning on the user experience, depending on the context in which the robot performs the task. Based on two types of the task contexts(Reactive vs. Proactive) and three types of robot feedback positioning(No move vs. Avoidance vs. Approach), six different scenarios were designed for experimental study. Likeability, perceived intelligence, rapport, negative attitude and predictability of behavior are measured for each conditions. The result showed the main effects of perceived intelligence, rapport, predictability in the context of tasks, and of likability, perceived intelligence, rapport in robot feedback positioning. The interaction effects were shown in likeability and perceived intelligence. In conclusion, approach-avoidance experiences can also be applied to robot behaviors as well, and the negative effects of avoidance have been significantly confirmed.

키워드

참고문헌

  1. IFR (24 Sep, 2020.). IFR Press Conference, https://ifr.org/downloads/press2018/presentation_WR)2020.pdf
  2. Y. K. Kim, S. S. Kwak & M. S. Kim. (2010). Effects of intergroup relations on people's acceptance of robots, HRI'10: Proceedings of the 5th ACM/IEEE International Conference on Human-Robot Interaction, 107-108. DOI: 10.555/1734453.1734495
  3. D. Kuchenbrandt, F. Eyssel, S. Bobinger & M. Neufeld. (2013). When a robot's group membership matters, International Journal of Social Robotics, 5, 409-417. https://doi.org/10.1007/s12369-013-0197-8
  4. Y. K. Kim, B. Mutlu. (2014). How Social Distance shapes human-Robot interaction, Int. J. Human-Computer Studies, 72, 783-795. DOI: 10.1016/j.ijhcs.2014.05.005
  5. Y. Kato, T. Kanda & H. Ishiguro. (2015). May I help you? Design of human-like polite approaching behavior. Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction (HRI'15), 35-42. DOI: 10,1145/2696454.2696463
  6. H. Cramer, N. Kemper, A. Amin & V. Evers. (2009). The effects of robot touch and proactive behaviour on perceptions of human-robot interactions. HCI'09.
  7. Y. Zhang, V. Narayanan, T. Chakraborti & S. Kambhampati. (2015). A human factors analysis of proactive support in human-robot teaming. International Conference on Intelligent Robots and Systems, 3586-3593.
  8. D. W. Lee. (2018. 7). Home service robot. Korea Industrial Technology Promotion Association, Technology and Innovation.
  9. J. H. Park. (2019). User-centered service concept for home robot development. Journal of Integrated Design Research, 18(4), 47-62.
  10. K. Jokinen, G.Wilcock. (2017). Expectations and first experience with a social robot. Proceeding of the 5 th International Conference on Human Agent Interaction, Bielefeld, 511-515.
  11. K. L. Koay, D. S. Syrdal, M. Ashgari-Oskoei, M. L. Walters & K. Dautenhahn. (2014). Social roles and baseline proxemic preferences for a domestic service robot. Int J of Soc Robotics, 6, 469-488. DOI: 10.1007/s12369-014-0232-4
  12. J. Priester, J. Cacioppo & R. Petty. (1996). The influence of motor processes on attitudes toward novel versus familiar semantic stimuli. Personality and Social Psychology Bulletin, 22(5), 442-447. https://doi.org/10.1177/0146167296225002
  13. Y. J. Jung, H. M. Kang, M. S. Yun & K. H. Han. (2019). Get it closer: Effect of the approach-avoidance experience on attitude through a touchscreen device. Sci. Emot. Sensib, 22(2), 17-28. https://doi.org/10.14695/KJSOS.2018.22.2.17
  14. J. Goetz, S. Kiesler & A. Powers. (2003). Matching robot appearance and behavior to tasks to improve human-robot cooperation, 12th IEEE International Workshop on Robot and Human Interactive Communication, 55-60. DOI: 10.1109/ROMAN.2003.1251796
  15. C. Bartneck, E. A. Croft, D. Kulic & S. Zoghbi. (2008). Measurment instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robotics, 71-81. DOI: 10.1007/s12369-008-0001-3
  16. T. Nimomiya, A. Fujita, D. Suzuki & H. Umemuro. (2015). Development of the multi-dimensional robot attitude scale: Comstructs of people's attitudes towards domestic robots. International Conference on Social Robotics, 482-491. DOI: 10.1007/978-3-319-25554-5_48
  17. Y. K. Kim & B. Mutlu. (2014). How social distance shapes human-robot interaction, International Journal of Human-Computer Studies, 72, 783-795. DOI: 10.1016/j.ijhcs.2014.05.005
  18. M. Poel, D. Heylen, A. Nijholt, M. Meulemans & A. van Breemen. (2009). Gaze behavior, belevability, likeability and the iCat. AI & Society, 24(1), 61-73. https://doi.org/10.1007/s00146-009-0198-1
  19. S. Moussawi. (2016). Investigating personal intelligence agents in everyday life through a behavioral lens, CUNY Academic works.
  20. G. Coan, Jr. (1984). Rapport: Definition and demensions. in NA-Advanced in Consumer Research, 11, 333-336.
  21. T. Nomura & T. Kanda. (2016). Rapport- expectation with a robot scale. International Journal of Social Robotics, 8, 21-30. DOI: 10.1007/s12369-015-0293-z
  22. F. Eyssel, D. Kuchenvrandt & S. Bobinger. (2011). Effects of anticipated human-robot interaction and predictability of robot behavior on perceptions of anthropomorphism. In Proceeding of the 6 th international Conference on Human-Robot Intercation, 61-68.
  23. K. E. Choi. (2021). Human-robot interaction study to communicate the status and operational intentions of non-human robots: based on the bystander's perception of the color and movement of light interface. M.A. dissertation, Yonsei University, Seoul.
  24. T. Nomura, T. Kanda & T. Suzuki. (2006). Experimental investigation into influence of negative attitudes toward robots on human-robot interaction. AI & Social, 20(2), 138-150. DOI: 10.1007/s00146-005-0012-7
  25. T, Komatsu & S. Yamada. (2011). Adaptation gap hypothesis: How differences between users' expected and perceived agent functions affect their subjective impresstion. Systemics, Cybernetics and Informatics, 9(1), 67-74.
  26. K. M. Mullaney, S. K. Carpenter, C. Grotenhuis & S. Burianek. (2014). Waiting for feedback helps if you want to know the answer: the role of curiosity in the delay-of-feedback benefit. Memory & Cognition, 42, 1273-1284. DOI: 10.3758/s1342-014-0441-y