DOI QR코드

DOI QR Code

WS2 Nanoparticles Embedded in Carbon Nanofibers for a Pseudocapacitor

의사 커패시터를 위한 WS2 나노입자가 내제된 탄소나노섬유

  • Sung, Ki-Wook (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Jung Soo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Tae-Kum (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 성기욱 (서울과학기술대학교 신소재공학과) ;
  • 이정수 (서울과학기술대학교 신소재공학과) ;
  • 이태근 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2021.06.07
  • Accepted : 2021.07.05
  • Published : 2021.08.27

Abstract

Tungsten disulfide (WS2), a typical 2D layerd structure, has received much attention as a pseudocapacitive material because of its high theoretical specific capacity and excellent ion diffusion kinetics. However, WS2 has critical limits such as poor long-term cycling stability owing to its large volume expansion during cycling and low electrical conductivity. Therefore, to increase the high-rate performance and cycling stability for pseudocapacitors, well-dispersed WS2 nanoparticles embedded in carbon nanofibers (WS2-CNFs), including mesopores and S-doping, are prepared by hydrothermal synthesis and sulfurizaiton. These unique nanocomposite electrodes exhibit a high specific capacity (159.6 F g-1 at 10 mV s-1), excellent high-rate performance (81.3 F g-1 at 300 mV s-1), and long-term cycling stability (55.9 % after 1,000 cycles at 100 mV s-1). The increased specific capacity is attributed to well-dispersed WS2 nanoparticles embedded in CNFs that the enlarge active area; the increased high-rate performance is contributed by reduced ion diffusion pathway due to mesoporous CNFs and improved electrical conductivity due to S-doped CNFs; the long-term cycling stability is attributed to the CNFs matrix including WS2 nanoparticles, which effectively prevent large volume expansion.

Keywords

Acknowledgement

This study was financially supported by the Research Program funded by the Seoul National University of Science and Technology.

References

  1. D.-Y. Shin, H.-G. Jo and H.-J. Ahn, Appl. Surf. Sci., 527, 146895 (2020). https://doi.org/10.1016/j.apsusc.2020.146895
  2. G.-H. An and H.-J. Ahn, Appl. Surf. Sci., 473, 77 (2019). https://doi.org/10.1016/j.apsusc.2018.12.120
  3. K.-H. Kim, J. Lee and H.-J. Ahn, Appl. Surf. Sci., 550, 149266 (2021). https://doi.org/10.1016/j.apsusc.2021.149266
  4. D.-Y. Shin, G.-H. An and H.-J. Ahn, Ceram. Int., 44, 4883 (2018). https://doi.org/10.1016/j.ceramint.2017.12.078
  5. S. Manzeli, D. Ovchinnilkov, D. Pasquier, O. V. Yazyev and A. Kis, Nat. Rev. Mater., 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
  6. D.-Y. Shin, J. Lee, B.-R. Koo and H.-J. Ahn, Chem. Eng. J., 412, 128547 (2021). https://doi.org/10.1016/j.cej.2021.128547
  7. S. Ratha and C. S. Rout, ACS Appl. Mater. Interfaces, 5, 11427 (2013). https://doi.org/10.1021/am403663f
  8. B. Hu, X. Qin, A. M. Asiri, K. A. Alamry, A. O. Al-Youbi and X. Sun, Electrochem. Commun., 28, 75 (2013). https://doi.org/10.1016/j.elecom.2012.11.035
  9. S. Wang, S. V. Kershaw, G. Li and M. K. H. Leung, J. Mater. Chem. C, 3, 3280 (2015). https://doi.org/10.1039/C5TC00278H
  10. W. O. Stacy, F. J. Vastola and P. L. Walker, Carbon, 6, 917 (1968). https://doi.org/10.1016/0008-6223(68)90075-4
  11. N. Hasheminejad, H. Tavakol and W. Salvenmoser, J. Clean Prod., 264, 121684 (2020). https://doi.org/10.1016/j.jclepro.2020.121684
  12. D.-Y. Shin, J. Lee and H.-J. Ahn, Appl. Surf. Sci., 550, 149298 (2021). https://doi.org/10.1016/j.apsusc.2021.149298
  13. K.-W. Sung, D.-Y. Shin and H.-J. Ahn, Korean J. Mater. Res., 29, 623 (2019). https://doi.org/10.3740/MRSK.2019.29.10.623
  14. Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 192 (2017). https://doi.org/10.3740/MRSK.2017.27.4.192
  15. L. Su, L. Luo, H. Song, Z. Wu, W. Tu, Z.-J, Wang and J. Ye, Chem. Eng. J., 388, 124346 (2020). https://doi.org/10.1016/j.cej.2020.124346
  16. D.-Y. Shin, K.-W. Sung and H.-J. Ahn, Appl. Surf. Sci., 478, 499 (2019). https://doi.org/10.1016/j.apsusc.2019.01.186
  17. R. Chen, T. Zhao, W. Wu, F. Wu, L. Li, J. Qian, R. Xu, H. Wu, H. M. Albishri, A. S. Al-Bogami, D. A. ElHady, J. Lu and K. Amine, Nano Lett., 14, 5899 (2014). https://doi.org/10.1021/nl502848z
  18. X. Li, Z. Pan, Z. Li, X. Wang, B. Saravanakumar, Y. Zhong, L. Xing, M. Xu, C. Guo and W. Li, J. Power Sources, 420, 22 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.089
  19. K.-W. Sung, B.-R. Koo and H.-J. Ahn, J. Alloys Compd., 854, 157206 (2021). https://doi.org/10.1016/j.jallcom.2020.157206
  20. Y.-J. Lee and H.-J Ahn, J. Korean Powder Metall. Inst., 22, 116 (2015). https://doi.org/10.4150/KPMI.2015.22.2.116