DOI QR코드

DOI QR Code

The Road Speed Sign Board Recognition, Steering Angle and Speed Control Methodology based on Double Vision Sensors and Deep Learning

2개의 비전 센서 및 딥 러닝을 이용한 도로 속도 표지판 인식, 자동차 조향 및 속도제어 방법론

  • 김인성 (남서울대학교 전자공학과) ;
  • 서진우 (남서울대학교 전자공학과) ;
  • 하대완 (남서울대학교 전자공학과) ;
  • 고윤석 (남서울대학교 전자공학과)
  • Received : 2021.06.20
  • Accepted : 2021.08.17
  • Published : 2021.08.31

Abstract

In this paper, a steering control and speed control algorithm was presented for autonomous driving based on two vision sensors and road speed sign board. A car speed control algorithm was developed to recognize the speed sign by using TensorFlow, a deep learning program provided by Google to the road speed sign image provided from vision sensor B, and then let the car follows the recognized speed. At the same time, a steering angle control algorithm that detects lanes by analyzing road images transmitted from vision sensor A in real time, calculates steering angles, controls the front axle through PWM control, and allows the vehicle to track the lane. To verify the effectiveness of the proposed algorithm's steering and speed control algorithms, a car's prototype based on the Python language, Raspberry Pi and OpenCV was made. In addition, accuracy could be confirmed by verifying various scenarios related to steering and speed control on the test produced track.

본 논문에서는 2개의 비전 센서와 딥 러닝을 이용한 자율주행 차량의 속도제어 알고리즘을 제시하였다. 비전 센서 A로부터 제공되는 도로 속도 표지판 영상에 딥 러닝 프로그램인 텐서플로우를 이용하여 속도 표지를 인식한 후, 자동차가 인식된 속도를 따르도록 하는 자동차 속도 제어 알고리즘을 제시하였다. 동시에 비전 센서 B부터 전송되는 도로 영상을 실시간으로 분석하여 차선을 검출하고 조향 각을 계산하며 PWM 제어를 통해 전륜 차축을 제어, 차량이 차선을 추적하도록 하는 조향 각 제어 알고리즘을 개발하였다. 제안된 조향 각 및 속도 제어 알고리즘의 유효성을 검증하기 위해서 파이썬 언어, 라즈베리 파이 및 Open CV를 기반으로 하는 자동차 시작품을 제작하였다. 또한, 시험 제작한 트랙에서 조향 및 속도 제어에 관한 시나리오를 검증함으로써 정확성을 확인할 수 있었다.

Keywords

References

  1. J. Yeon, S. Park, J. Kim, and J. Joo, "Survey on the Use of Automobiles," KOTI Report, 2013.
  2. J. Kim ,J. Park, D. Kim, S. Choi, Y. Lim, and J. Ryu, "Realization of Safe Land for Traffic Accidents," KRIHS 2014-22 Report, 2014.
  3. G. Yang and X. Chen, "Analysis of Key Technologies to Achieve Autonomous Driving on Closed Roads in the Near Future," J. of Physics: Conference Series, vol. 1601, Open Access 052040, Aug. 2020.
  4. T. Litman, "Autonomous Vehicle Implementation Predictions: Implications for Transport Planning," Report, 2021.
  5. M. Bin and Y. Kim, "Prospects for the Introduction of Autonomous Vehicles and Changes in the Transportation Environment," Report, 2017.
  6. H. Kaas, D. Mohr, P. Gao, D. Wee, and T. Moller, "Automotive Revolution Perspective Towards 2030," Report, Jan. 2016.
  7. J. Kim and J. Ha, "Performing Missions of a Minicar Using a Single Camera," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 1, Feb. 2017, pp. 123-128. https://doi.org/10.13067/JKIECS.2017.12.1.123
  8. J. Kwon, D. Kim, T. Hwang, and H. Park, "A Development of Effective Object Detection System Using Multi-Device LiDAR Sensor in Vehicle Driving Environment," J. of the Korea Institute of Electronic Communication Science, vol. 13, no. 2, Apr. 2018, pp. 313-320. https://doi.org/10.13067/JKIECS.2018.13.2.313
  9. Y. Ahn and S. Kwak, "Long Distance Vehicle Recognition and Tracking using Shadow," J. of the Korea Institute of Electronic Communication Science, vol. 14, no. 1, Feb. 2019, pp. 251-256. https://doi.org/10.13067/JKIECS.2019.14.1.251
  10. H. Lee, J. Jang, and G. Jeon, "Predicting of the Severity of Car Traffic Accidents on a Highway Using Light Gradient Boosting Model, "J. of the Korea Institute of Electronic Communication Science, vol. 15, no. 6, Dec. 2020, pp. 1123-1130. https://doi.org/10.13067/JKIECS.2020.15.6.1123
  11. J. Kim, Y. Ju, and E. Kim, "Object Recognition Technology using LiDAR Sensor for Obstacle Detection of Agricultural Autonomous Robot, "J. of the Korea Institute of Electronic Communication Science, vol. 16, no. 3, June 2021, pp. 565-570. https://doi.org/10.13067/JKIECS.2021.16.3.565
  12. J. Park and H. Kim, "Autonomous Driving Technology," KISTEP 2019-16 Report, 2019.
  13. P. Mandlik and A. Deshmukh, "Raspberry-pi based Real Time Lane Departure Warning System using Image Processing," International Journal of Engineering Research and Technology, vol 5, no. 6, June 2016, pp. 755-762.
  14. Y. Wang, E. K. Teoh, and D. Shen, "Lane Detection and Tracking using B-Snake," Image Vis. Comput. vol. 22, no. 4, Apr. 2004, pp. 269-280. https://doi.org/10.1016/j.imavis.2003.10.003
  15. N. Hasan, T. Anzum, and Nusrat Jahan, " Traffic Sign Recognition System (TSRS): SVM and Convolutional Neural Network," 4th International Conference on Inventive Communication and Computational Technologies, Tamil Nadu, India, 2020.
  16. F. Moutarde, A. Bargeton, A. Herbin, and L. Chanussot, "Modular Traffic Sign Recognition applied to On-vehicle Real-time Visual Detection of American and European Speed Limit Signs," 14th World Congress on Intelligent Transportation Systems, Beijing, China, 2007.
  17. M. Mohammed, M. B. Khan, and E. B. M. Basher, Machine Learning : Algorithms and Application. Florida: CRC Press, 2017.
  18. S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithm. Cambridge: Canmridge University Press, 2014.
  19. I. Kim, J. Seo, D. Ha, and Y. Ko, "A Study on the Road Speed Sign Board Recognition Using a Vision Sensor and Deep Learning," In Proc. of the Korea Institute of Electronic Communication Science Conference, Daejeon, South Korea, 2021.