DOI QR코드

DOI QR Code

오존, 암모니아 순차적 처리를 통한 바나듐 레독스 흐름 전지용 활성화 카본 펠트 전극 개발

Development of Activated Graphite Felt Electrode Using Ozone and Ammonia Consecutive Post Treatments for Vanadium Redox Flow Batteries

  • 최한솔 (연세대학교 화공생명공학과) ;
  • 김한성 (연세대학교 화공생명공학과)
  • CHOI, HANSOL (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • KIM, HANSUNG (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 투고 : 2021.07.30
  • 심사 : 2021.08.19
  • 발행 : 2021.08.30

초록

A carbon felt electrode was prepared using ozone and ammonia sequential treatment and applied as an electrode for a vanadium redox flow battery (VRFB). The physical and electrochemical analyses demonstrate that the oxygen groups facilitate nitrogen doping in the carbon felt. Carbon felt (J5O3+NH3), which was subjected to ammonia heat treatment after ozone treatment, showed higher oxygen and nitrogen contents than carbon felt (J5NH3+O3), which was subjected to ammonia heat treatment first and then ozone treatment. From the charging/discharging of VRFB, the J5O3+NH3 carbon felt electrode showed 14.4 Ah/L discharge capacity at a current density of 150 mA /cm2, which was 15% and 33% higher than that of J5NH3+O3 and non-activated carbon felt (J5), respectively. These results show that ozone and ammonia sequential treatment is an effective carbon felt activation method to increase the performance of the vanadium redox flow battery.

키워드

과제정보

이 논문은 2016년도 한국전력공사의 재원으로 한전전력연구원(과제 번호: No. R16EA06)의 지원으로 수행된 연구 결과입니다.

참고문헌

  1. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, "Electrochemical energy storage for green grid", Chem. Rev., Vol. 111, No. 5, 2011, pp. 3577-3613, doi: https://doi.org/10.1021/cr100290v.
  2. B. Dunn, H. Kamath, and J. M. Tarascon, "Electrical energy storage for the grid: a battery of choices", Science, Vol. 334, No. 6058, 2011, pp. 928-935, doi: https://doi.org/10.1126/science.1212741.
  3. Z. Mai, H. Zhang, X. Li, S. Xiao, and H. Zhang, "Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application", Journal of Power Sources, Vol. 196, No. 13, 2011, pp. 5737-5741, doi: https://doi.org/10.1016/j.jpowsour.2011.02.048.
  4. K. J. Kim, Y. J. Kim, J. H. Kim, and M. S. Park, "The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries", Materials Chemistry and Physics, Vol. 131, No. 1-2, 2011, pp. 547-553, doi: https://doi.org/10.1016/j.matchemphys.2011.10.022.
  5. Z. Gonzalez, C. Botas, P. Alvarez, S. Roldan, C. Blanco, R. Santamaria, M. Granda, and R. Menendez, "Thermally reduced graphite oxide as positive electrode in vanadium redox flow batteries", Carbon, Vol. 50, No. 3, 2012, pp. 828-834, doi: https://doi.org/10.1016/j.carbon.2011.09.041.
  6. H. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, and M. Kamimoto, "Vanadium redox reactions and carbon electrodes for vanadium redox flow battery", Etectrochemica Acta, Vol. 36, No. 7, 1991, pp. 1191-1196, doi: https://doi.org/10.1016/0013-4686(91)85108-J.
  7. B. Sun and M. Skyllas-Kazacos, "Chemical modification of graphite electrode materials for vanadium redox flow battery application-part II. Acid treatments", Etectrochemica Acta, Vol. 37, No. 13, 1992, pp. 2459-2465, doi: https://doi.org/10.1016/0013-4686(92)87084-D.
  8. B. Sun and M. Skyllas-Kazacos, "Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution", Etectrochemica Acta, Vol. 36, No. 3-4, 1991, pp. 513-517, doi: https://doi.org/10.1016/0013-4686(91)85135-T.
  9. B. Sun and M. Skyllas-Kazacos, "Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment", Etectrochemica Acta, Vol. 37, No. 7, 1992, pp. 1253-1260, doi: https://doi.org/10.1016/0013-4686(92)85064-R.
  10. L. Yue, W. Li, F. Sun, L. Zhao, and L. Xing, "Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery", Carbon, Vol. 48, No. 11, 2010, pp. 3079-3090, doi: https://doi.org/10.1016/j.carbon.2010.04.044.
  11. W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, and X. Qiu, "Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application", Electrochimica Acta, Vol. 89, 2013, pp. 429-435, doi: https://doi.org/10.1016/ j.electacta.2012.11.072.
  12. D. Kil, H. J. Lee, S. Park, S. Kim, and H. Kim, "Synthesis of activated graphite felts using short-term ozone/heat treatment for vanadium redox flow batterie", J. Electrochem. Soc., Vol. 164, No. 13, 2017, pp. A3011-A3017, doi: https://doi.org/10.1149/2.0311713jes.
  13. J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu, and J. Zhang, "Identifying the active site in nitrogen-doped graphene for the VO2+/VO2+ redox reaction", ACS Nano, Vol. 7, No. 6, 2013, pp. 4764-4773, doi: https://doi.org/10.1021/nn3046709.
  14. Y. Shaoa, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, and Y. Lin, "Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries", Journal of Power Sources, Vol. 195, No. 13, 2010, pp. 4375-4379, doi: https://doi.org/10.1016/j.jpowsour.2010.01.015.
  15. H. Lee and H. Kim, "Development of nitrogen-doped carbons using the hydrothermal method as electrode materials for vanadium redox flow batteries", J. Appl. Electrochem., Vol. 43, 2013, pp. 553-557, doi: https://doi.org/10.1007/s10800-013-0539-0.
  16. S. Wang, X. Zhao, T. Cochell, and A. Manthiram, "Nitrogen-doped carbon nanotube/graphite felts as advanced electrode materials for vanadium redox flow batteries", J. Phys. Chem. Lett., Vol. 3, No. 16, 2012, pp. 2164-2167, doi: https://doi.org/10.1021/jz3008744.
  17. C. Flox, J. Rubio-Garcia, M. Skoumal, T. Andreu, and J. R. Morante, "Thermo-chemical treatments based on NH3/O2 for improved graphite-based fiber electrodes in vanadium redox flow batteries", Carbon, Vol. 60, 2013, pp. 280-288, doi: https://doi.org/10.1016/j.carbon.2013.04.038.
  18. T. Wu, K. Huang, S. Liu, S. Zhuang, D. Fang, S. Li, D. Lu, and A. Su, "Hydrotherm al am m oniated treatm ent of PAN-graphite felt for vanadium redox flow battery", J. Solid State Electrochem., Vol. 16, 2012, pp. 579-585, doi: https://doi.org/10.1007/s10008-011-1383-y.
  19. H. J. Lee and H. Kim, "Graphite felt coated with dopamine-derived nitrogen-doped carbon as a positive electrode for a vanadium redox flow battery", J. Electrochem. Soc., Vol. 162, No. 8, 2015, pp. A1675-A1681, doi: https://doi.org/10.1149/2.0081509jes.
  20. S. Park and H. Kim, "Fabrication of nitrogen-doped graphite felts as positive electrodes using polypyrrole as a coating agent in vanadium redox flow batteries", Journal of Materials Chemistry A, Vol. 3, No. 23, 2015, pp. 12276-12283, doi: https://doi.org/10.1039/C5TA02674A.
  21. H. J. Lee, D. Kil, and H. Kim, "Synthesis of activated graphite felt using consecutive post-treatments for vanadium redox flow batteries", J. Electrochem. Soc., Vol. 163, No. 13, 2016, pp. A2586-A2591, doi: https://doi.org/10.1149/2.0531613jes.