DOI QR코드

DOI QR Code

Preclinical evaluation using functional SPECT imaging of 123I-metaiodobenzylguanidine (mIBG) for adrenal medulla in normal mice

  • Yiseul Choi (Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Hye Kyung Chung (Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Sang Keun Woo (Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Kyo Chul Lee (Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Seowon Kang (Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Seowon Kang (Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Joo Hyun Kang (Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Iljung Lee (Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences (KIRAMS))
  • Received : 2021.12.03
  • Accepted : 2021.12.28
  • Published : 2021.12.30

Abstract

meta-iodobenzylguanidine is one of the norepinephrine analogs and reuptakes together with norepinephrine with norepinephrine transporter. The radioiodinated ligand, 123I-meta-iodobenzylguanidine, is the most widely used for single photon emission computed tomography imaging to diagnose functional abnormalities and tumors of the sympathetic nervous system. In this study, we performed cellular uptake studies of 123I-meta-iodobenzylguanidine in positive- and negative-norepinephrine transporter cells in vitro to verify the uptake activity for norepinephrine transporter. After 123I-meta-iodobenzylguanidine was injected via a tail vein into normal mice, Single photon emission computed tomography/computed tomography images were acquired at 1 h, 4 h, and 24 h post-injection, and quantified the distribution in each organ including the adrenal medulla as a norepinephrine transporter expressing organ. In vitro cell study showed that 123I-meta-iodobenzylguanidine specifically uptaked via norepinephrine transporter, and significant uptake of 123I-meta-iodobenzylguanidine in the adrenal medulla in vivo single photon emission computed tomography images. These results demonstrated that single photon emission computed tomography imaging with 123I-meta-iodobenzylguanidine were able to quantify the biodistribution in vivo in the adrenal medulla in normal mice.

Keywords

Acknowledgement

이 연구는 과학기술정보통신부의 재원으로 한국연구재단의 방사성동위원소 산업육성 및 고도화기술지원사업(NRF2021M2E7A1079168)과과학기술정보통신부 한국원자력의학원 연구운영비 지원사업(No. 50461- 2021, 50539-2021)의 지원을 받아 수행하였으며 다른 상업적 이해관계는없음.

References

  1. Nagatsu T, Levitt M, Udenfriend S. Tyrosine Hydroxylase. The Initial Step in Norepinephrine Biosynthesis. J. Biol. Chem.. 1964;239(9):2910-7. https://doi.org/10.1016/S0021-9258(18)93832-9
  2. Vallabhajosula S, Nikolopoulou A. Radioiodinated metaiodobenzylguanidine (MIBG): radiochemistry, biology, and pharmacology. Seminars in Nuclear Medicine, 2011. Elsevier: 324-33.
  3. Mandela P, Ordway GA. The norepinephrine transporter and its regulation. J. Neurochem.. 2006;97(2):310-33. https://doi.org/10.1111/j.1471-4159.2006.03717.x
  4. Chen X, Kudo T, Lapa C, Buck A, Higuchi T. Recent advances in radiotracers targeting norepinephrine transporter: structural development and radiolabeling improvements. J. Neural. Transm. (Vienna). 2020;127(6):851-73. https://doi.org/10.1007/s00702-020-02180-4
  5. Bonisch H, Bruss M. The norepinephrine transporter in physiology and disease. Neurotransmitter transporters. 2006:485-524.
  6. Schroeder C, Jordan J. Norepinephrine transporter function and human cardiovascular disease. Am. J. Physiol. Heart. Circ. Physiol..2012;303(11):H1273-82. https://doi.org/10.1152/ajpheart.00492.2012
  7. Delaville C, Deurwaerdere PD, Benazzouz A. Noradrenaline and Parkinson's disease. Front. Syst. Neurosci.. 2011;5:31.
  8. Bohm M, Castellano M, Flesch M, Maack C, Moll M, Paul M. Chamber-specific alterations of norepinephrine uptake sites in cardiac hypertrophy. Hypertension. 1998;32(5):831-7. https://doi.org/10.1161/01.HYP.32.5.831
  9. Tejani-Butt SM, Yang J, Zaffar H. Norepinephrine transporter sites are decreased in the locus coeruleus in Alzheimer's disease. Brain Res.. 1993;631(1):147-50. https://doi.org/10.1016/0006-8993(93)91201-3
  10. Ungerer M, Chlistalla A, Richardt G. Upregulation of cardiac uptake1 carrier in ischemic and nonischemic rat heart. Circ. Res..1996;78(6):1037-43. https://doi.org/10.1161/01.RES.78.6.1037
  11. Reisch N, Peczkowska M, Januszewicz A, Neumann HP. Pheochromocytoma: presentation, diagnosis and treatment. J. Hypertens. 2006;24(12):2331-9. https://doi.org/10.1097/01.hjh.0000251887.01885.54
  12. Grunwald F, Ezziddin S. 131I-metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors. Seminars in Nuclear Medicine, 2010. Elsevier: 153-63.
  13. Ding YS, Lin KS, Logan J. PET imaging of norepinephrine transporters. Curr. Pharm. Des.. 2006;12(30):3831-45.
  14. Shapiro B, Gross MD, Shulkin B. Radioisotope diagnosis and therapy of malignant pheochromocytoma. Trends Endocrinol. Metab.. 2001;12(10):469-75. https://doi.org/10.1016/S1043-2760(01)00492-1
  15. Zhang H, Huang R, Cheung N-KV, Guo H, Zanzonico PB, Thaler HT. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin. Cancer Res..2014; 20(8):2182-91. https://doi.org/10.1158/1078-0432.CCR-13-1153
  16. Watanabe S, Hanaoka H, Liang JX, Iida Y, Endo K, Ishioka NS. PET Imaging of Norepinephrine Transporter-Expressing Tumors Using 76Br-meta-Bromobenzylguanidine. J. Nucl. Med.. 2010;51(9):1472-9. https://doi.org/10.2967/jnumed.110.075465
  17. Bravo EL. Evolving concepts in the pathophysiology, diagnosis, and treatment of pheochromocytoma. Endocr. Rev.. 1994;15(3):356-68. https://doi.org/10.1210/edrv-15-3-356
  18. Wieland DM, Wu J-l, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with [131I] iodobenzylguanidine. J. Nucl. Med.. 1980;21(4):349-53.
  19. Sisson JC, Frager MS, Valk TW, Gross MD, Swanson DP, Wieland DM. Scintigraphic localization of pheochromocytoma. N. Engl. J. Med.. 1981;305(1):12-7. https://doi.org/10.1056/NEJM198107023050103
  20. Sharp SE, Trout AT, Weiss BD, Gelfand MJ. MIBG in Neuroblastoma Diagnostic Imaging and Therapy. Radiographics. 2016;36(1):258-78. https://doi.org/10.1148/rg.2016150099
  21. Pandit-Taskar N, Modak S. Norepinephrine transporter as a target for imaging and therapy. J. Nucl. Med.. 2017;58(Supplement 2):39S-53S. https://doi.org/10.2967/jnumed.116.186833
  22. Fujita W, Matsunari I, Aoki H, Nekolla SG, Kajinami K. Prediction of all-cause death using 11C-hydroxyephedrine positron emission tomography in Japanese patients with left ventricular dysfunction. Ann. Nucl Med.. 2016;30(7):461-7. https://doi.org/10.1007/s12149-016-1081-z
  23. Goldstein D, Holmes C, Stuhlmuller JE, Lenders JW, Kopin IJ. 6-[18F] Fluorodopamine positron emission tomographic scanning in the assessment of cardiac sympathoneural function studies in normal humans. Clin. Auton. Res.. 1997;7(1):17-29. https://doi.org/10.1007/BF02267622
  24. Garg PK, Garg S, Zalutsky MR. Synthesis and preliminary evaluation of para-and meta-[18F] fluorobenzylguanidine. Nucl. Med. Biol.. 1994;21(1):97-103. https://doi.org/10.1016/0969-8051(94)90135-X
  25. Vaidyanathan G, Affleck DJ, Zalutsky MR. (4-[18F] Fluoro-3-iodobenzyl) guanidine, a Potential MIBG Analog for Positron Emission Tomography. J. Med. Chem.. 1994;37(21):3655-62. https://doi.org/10.1021/jm00047a022
  26. Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4-[fluorine-18] fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J. Nucl. Med.. 1995;36(4):644-50.
  27. Vaidyanathan G, McDougald D, Koumarianou E, Choi J, Hens M, Zalutsky MR. Synthesis and evaluation of 4-[18F] fluoropropoxy-3-iodobenzylguanidine ([18F] FPOIBG): a novel 18F-labeled analogue of MIBG. Nucl. Med. Biol.. 2015;42(8):673-84. https://doi.org/10.1016/j.nucmedbio.2015.04.005
  28. Vaidyanathan G, Shao X-G, Strickland DK, Zalutsky MR. No-carrier-added iodine-131-FIBG: evaluation of an MIBG analog. J. Nucl. Med.. 1997;38(2):330.
  29. Vaidyanathan G, Zhao X, Larsen R, Zalutsky M. 3-[211At] astato-4-fluorobenzylguanidine: a potential therapeutic agent with prolonged retention by neuroblastoma cells. Br. J. Cancer. 1997;76(2):226-33. https://doi.org/10.1038/bjc.1997.366