DOI QR코드

DOI QR Code

Recent progress of enzyme cleavable linker in antibody-drug conjugates: sulfatase and phosphatase

  • Sushil K. Dwivedi (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University) ;
  • Abhinav Bhise (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University) ;
  • Rajkumar Subramani (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University) ;
  • Jeongsoo Yoo (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University)
  • Received : 2021.05.31
  • Accepted : 2021.06.28
  • Published : 2021.06.30

Abstract

Recently, antibody-drug conjugates (ADCs) are used to deliver efficient cytotoxic payloads selectively in cancer cells. In the designing of an ADC, the antibody is connected to a toxic payload via a covalent linker, which helps to solubilizes the typical hydrophobic payload as well as stabilizes the linkage over circulation. The development of the linkers for the antibody drug conjugate is still in demand. Initially, the acid, disulfide, and cathepsin-sensitive ADCs attracted considerable attention for the delivery of a potent cytotoxic payload but suffer from instability in human and mouse plasma with a short half-life. In addition, It also suffer from a solubility issue that induces aggregation, which is the major problem in their development. ADCs associated with sulfatase and phosphatase cleavable linker are highly soluble due to the anionic nature of sulfate and phosphate groups. The ADCs also showed high stability in human and mouse plasma. Therefore, to overcome these limitations, sulfatase and phosphatase cleavable linkers were developed. This review focuses on the recently reported advantages of sulfatase and phosphatase cleavable linkers for ADCs.

Keywords

Acknowledgement

This work was supported by an R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2019R1A2C2084313, 2020M2D8A3094031 and 2020R1C1C1008442).

References

  1. Walsh JS, Bargh DJ, Dannheim MF, Hanby RA, Seki H, Counsell AJ, Ou X, Fowler E, Ashman N, Takada Y, Isidro-Llobet A, Parker SJ, Carroll SJ, Spring RD. Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev 2021;50(2):1305-1353. https://doi.org/10.1039/D0CS00310G
  2. Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-Drug Conjugates: The Last Decade. Pharmaceuticals 2020;13(9):245-276. https://doi.org/10.3390/ph13090245
  3. Bargh DJ, Isidro-Llobet A, Parker SJ, Spring RD. Cleavable linkers in antibody-drug conjugates. Chem Soc Rev 2019;48 (16):4361-4374.
  4. Hamann RP, Hinman ML, Hollander I, Beyer FC, Lindh D, Holcomb R, Hallett W, Tsou RH, Upeslacis J, Shochat D, Mountain A, Flowers AD, Bernstein I. Bioconjugate Chem 2002;13(1):47-58. https://doi.org/10.1021/bc010021y
  5. Pillow HT, Sadowsky DJ, Zhang D, Yu S-F, Rosario DG, Xu K, He J, Bhakta S, Ohri R, Kozak RK, Ha E, Junutula RJ, Flygare AJ. Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem Sci 2017;8(1):366-370. https://doi.org/10.1039/C6SC01831A
  6. Wei B, Gunzner-Toste J, Yao H, Wang T, Wang J, Xu Z, Chen J, Wai J, Nonomiya J, Tsai PS, Chuh J, Kozak RK, Liu Y, Yu FS, Lau J, Li G, Phillips DG, Leipold D, Kamath A, Su D, Xu K, Eigenbrot C, Steinbacher S, Ohri R, Raab H, Staben RL, Zhao G, Flygare AJ, Pillow HT, Verma V, Masterson AL, Howard WP, Safina B. Discovery of Peptidomimetic Antibody-Drug Conjugate Linkers with Enhanced Protease Specificity. J Med Chem 2018;61(3):989-1000.
  7. Jeffrey CS, Andreyka BJ, Bernhardt XS, Kissler MK, Kline T, Lenox SJ, Moser FR, Nguyen TM, Okeley MN, Stone JI, Zhang X, Senter DP. Development and Properties of β-Glucuronide Linkers for Monoclonal Antibody-Drug Conjugates. Bioconjugate Chem, 2006;17(3):831-840. https://doi.org/10.1021/bc0600214
  8. Bargh JD, Walsh JS, Isidro-Llobet A, Omarjee S, Carroll SJ, Spring RD. Sulfatase-cleavable linkers for antibody-drug conjugates. Chem Sci 2020;11(9):2375-2380. https://doi.org/10.1039/C9SC06410A
  9. Bargh DJ, Walsh JS, Ashman N, Isidro-Llobet A, Carroll SJ, Spring RD. A dual-enzyme cleavable linker for antibody-drug conjugates. Chem Commun 2021;57(28):3457-3460.
  10. Kern CJ, Cancilla M, Dooney D, Kwasnjuk K, Zhang R, Beaumont M, Figureueroa I, Hsieh S, Liang L, Tomazela D, Zhang J, Brandish EP, Palmieri A, Stivers P, Cheng M, Feng G, Geda P, Shah S, Beck A, Bresson D, Firdos J, Gately D, Knudsen N, Manibusan A, Schultz GP, Sun Y, Garbaccio MR. Discovery of pyrophosphate diesters as tunable, soluble and bioorthogonal linkers for site-specific antibody-drug conjugates. J Am Chem Soc 2016;138(4):1430-1445. https://doi.org/10.1021/jacs.5b12547
  11. Kern CJ, Dooney D, Zhang R, Liang L, Brandish EP, Cheng M, Feng G, Beck A, Bresson D, Firdos J, Gately D, Knudsen N, Manibusan A, Sun Y, Garbaccio MR. Novel Phosphate Modified Cathepsin B Linkers: Improving Aqueous Solubility and Enhancing Payload Scope of ADCs. Bioconjugate Chem 2016;27(9):2081-2088. https://doi.org/10.1021/acs.bioconjchem.6b00337
  12. Corso DA, Pignataro L, Belvisi L, Gennari C. Innovative Linker Strategies for tumor Targeted Drug Conjugates. Chem Eur J 2019;25(65):14740-14757. https://doi.org/10.1002/chem.201903127
  13. Kolodych S, Michel C, Delacroix S, Koniev O, Ehkirch A, Eberova J, Cianfe'rani S, Renoux B, Krezel W, Poinot P, Muller DC, Papot S, Wagner A. Eur J Med Chem 2017;142:376-382. https://doi.org/10.1016/j.ejmech.2017.08.008
  14. Burke JP, Senter DP, Meyer WD, Miyamoto BJ, Anderson M, Toki EB, Manikumar G, Wani CM, Kroll JD, Jeffrey CS. Design, Synthesis, and Biological Evaluation of Antibody-Drug Conjugates Comprised of Potent Camptothecin Analogues. Bioconjugate Chem 2009;20(6):1242-1250. https://doi.org/10.1021/bc9001097
  15. Hanson RS, Best DM, Wong C-H. Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility. Angew Chem Int Ed 2004;43(43):5736-5763. https://doi.org/10.1002/anie.200300632
  16. Albin N, Massaad L, Toussaint C, Mathieu CM, Morizet J, Parise O, Gouyette A, Chabot GG. Main Drug-metabolizing Enzyme Systems in Human Breast Tumors and Peritumoral Tissues. Cancer Res 1993;53(15):3541-3546.
  17. Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli GP, Gerrits B, Picotti P, Lam H, Vitek O, Brusniak M-Y, Roschitzki B, Zhang C, Shokat MK, Schlapbach R, Colman-Lerner A, Nolan PG, Nesvizhskii IA, Peter M, Loewith R, Mering WC, Aebersold R, Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast. Sci Signaling 2010;3(153):rs4.
  18. Dragovich SP, Pillow HT, Blake AR, Sadowsky DJ, Adaligil E, Adhikari P, Chen J, Corr N, dela J, Geoffrey C-C, Rosario D, Fullerton A, Hartman JS, Jiang F, Kaufman S, Kleinheinz T, Kozak RK, Liu L, Lu Y, Mulvihill MM, Murray MJ, O'Donohue A, Rowntree KR, Sawyer SW, Staben RL, John W, Jian W, BinQing W, Wei W, Xu Z, Yao H, Yu S-F, Zhang D, Zhang H, Zhang S, Zhao Y, Zhou H, Zhu X. Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of in Vitro Antiproliferation Activity and in Vivo Antitumor Efficacy. J Med Chem 2021;64(5):2576-2607. https://doi.org/10.1021/acs.jmedchem.0c01846