참고문헌
- Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2). https://doi.org/10.12989/cac.2016.18.2.155.
- Adam, A.A. and Horianto. (2014), "The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar", Procedia Eng., 95, 410-414. https://doi.org/10.1016/j.proeng.2014.12.199.
- Al Bakri, A.M., Kamarudin, H., Bnhussain, M., Nizar, I.K., Rafiza, A.R. and Zarina, Y. (2012), "The processing, characterization, and properties of fly ash based geopolymer concrete", Rev. Adv. Mater. Sci., 30, 90-97.
- Asikgil, B. and Erar, A. (2000), "Regression error characteristic curves based on the choice of best estimation method", Selcuk J. Appl. Math., 14(2).
- Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P. and Pilakoutas, K. (2021), "Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models", Cement Concrete Res., 145, 106449. https://doi.org/10.1016/j.cemconres.2021.106449.
- Bardhan, A., Samui, P., Ghosh, K., Gandomi, A.H. and Bhattacharyya, S. (2021), "ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions", Appl. Sof. Comput., 107595. https://doi.org/10.1016/j.asoc.2021.107595.
- Berkelmans, L. and Wang, H. (2012), "Chinese urban residential construction to 2040", Economic Research DepartmentReserve Bank of Australia.
- Berry, G. and Armitage, P. (1995), "Mid-P confidence intervals: a brief review", Statistician, 44, 417-423. https://doi.org/10.2307/2348891
- Bi, J. and Bennett, K.P. (2003), "Regression error characteristic curves", Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), 43-50.
- Biswas, R., Rai, B., Samui, P. and Roy, S.S. (2020), "Estimating concrete compressive strength using MARS, LSSVM and GP", Eng. J., 24(2), 41-52. https://doi.org/10.4186/ej.2020.24.2.41.
- Biswas, R., Samui, P. and Rai, B. (2019), "Determination of compressive strength using relevance vector machine and emotional neural network", Asian J. Civil Eng., 20(8), 1109-1118. https://doi.org/10.1007/s42107-019-00171-9.
- Chen, C., Habert, G., Bouzidi, Y. and Jullien, A. (2010), "Environmental impact of cement production: detail of the different processes and cement plant variability evaluation", J. Clean. Prod., 18(5), 478-485. https://doi.org/10.1016/j.jclepro.2009.12.014.
- Chen, L. and Wang, T.S. (2010), "Modeling strength of high-performance concrete using an improved grammatical evolution combined with macrogenetic algorithm", J. Comput. Civil Eng., 24(3), 281-288. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000031.
- Hardjito, D., Wallah, S.E., Sumajouw, D.M. and Rangan, B.V. (2005), "Fly ash-based geopolymer concrete", Austral. J. Struct. Eng., 6(1), 77-86. https://doi.org/10.1080/13287982.2005.11464946.
- Davidovits, J. (1991), "Geopolymers-Inorganic polymeric new materials", J. Therm. Anal., 37(8), 1633-1656. https://doi.org/10.1007/BF01912193.
- Diaz-Loya, E.I., Allouche, E.N. and Vaidya, S. (2011), "Mechanical properties of fly-ash-based geopolymer concrete", ACI Mater. J., 108(3), 300-306. https://doi.org/620.1u40492-dc22.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4). https://doi.org/10.12989/cac.2018.21.4.463.
- Feng, D., Tan, H. and Van Deventer, J.S.J. (2004), "Ultrasound enhanced geopolymerisation", J. Mater. Sci., 39(2), 571-580. https://doi.org/10.1023/B:JMSC.0000011513.87316.5c.
- Fernandez-Jimenez, A.M., Palomo, A. and Lopez-Hombrados, C. (2006), "Engineering properties of alkali-activated fly ash concrete", ACI Mater. J., 103(2), 106-112. https://doi.org/10.1111/j.1745-4530.2008.00353.x.
- Fernandez-Jimenez, A., Palomo, A. and Criado, M. (2005), "Microstructure development of alkali-activated fly ash cement: A descriptive model", Cement Concrete Res., 35(6), 1204-1209. https://doi.org/10.1016/j.cemconres.2004.08.021.
- Garcia-Lodeiro, I., Palomo, A. and Fernandez-Jimenez, A. (2007), "Alkali-aggregate reaction in activated fly ash systems", Cement Concrete Res., 37(2), 175-183. https://doi.org/10.1016/j.cemconres.2006.11.002.
- Ghani, S., Kumari, S. and Bardhan, A. (2021), "A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models", Sadhana, 46(3), 113. https://doi.org/10.1007/s12046-021-01640-1.
- Golafshani, E.M., Rahai, A. and Kebria, S.S.H. (2014), "Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming", Comput. Concrete, 14(3), 327-345. https://doi.org/10.12989/cac.2014.14.3.327.
- Gunasekara, C., Law, D.W., Setunge, S. and Sanjayan, J.G. (2015), "Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers", Constr. Build. Mater., 95, 592-599. https://doi.org/10.1016/j.conbuildmat.2015.07.175.
- Hardjito, D., Wallah, S.E., Sumajouw, D.M.J. and Rangan, B. . (2004), "Factors influencing the compressive strength of fly ash-based geopolymer concrete", Civil Eng. Dimens., 6(2), 88-93. https://doi.org/10.9744/ced.6.2.
- Jong, Y.H. and Lee, C.I. (2004), "Influence of geological conditions on the powder factor for tunnel blasting", Int. J. Rock Mech. Min. Sci., 41, 533-538. https://doi.org/10.1016/j.ijrmms.2004.03.095.
- Kardani, N., Bardhan, A., Kim, D., Samui, P. and Zhou, A. (2021), "Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM, GMDH, ANFIS-BBO and ANFIS-IPSO", J. Build. Eng., 35, 102105. https://doi.org/10.1016/j.jobe.2020.102105.
- Kardani, N., Bardhan, A., Samui, P., Nazem, M., Zhou, A. and Armaghani, D.J. (2021), "A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01329-3.
- Khale, D. and Chaudhary, R. (2007), "Mechanism of geopolymerization and factors influencing its development: A review", J. Mater. Sci., 42(3), 729-746. https://doi.org/10.1007/s10853-006-0401-4.
- Koza, J. (1992), Genetic Programming: On The Programming of Computers by Natural Selection, MITPress, Cambridge, MA.
- Kumar, M., Bardhan, A., Samui, P., Hu, J.W. and Kaloop, M.R. (2021), "Reliability analysis of pile foundation using soft computing techniques: a comparative study", Process., 9(3), 486. https://doi.org/10.3390/pr9030486.
- Ling, Y., Wang, K., Wang, X. and Hua, S. (2019), "Effects of mix design parameters on heat of geopolymerization, set time, and compressive strength of high calcium fly ash geopolymer", Constr. Build. Mater., 228, 116763. https://doi.org/10.1016/j.conbuildmat.2019.116763.
- Ling, Y., Wang, K., Wang, X. and Li, W. (2019), "Prediction of engineering properties of fly ash-based geopolymer using artificial neural networks", Neur. Comput. Appl., 3, 85-105. https://doi.org/10.1007/s00521-019-04662-3.
- Meyer, C. (2009), "The greening of the concrete industry", Cement Concrete Compos., 8(31), 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010.
- Nematzadeh, M., Shahmansouri, A.A. and Zabihi, R. (2021), "Innovative models for predicting post-fire bond behavior of steel rebar embedded in steel fiber reinforced rubberized concrete using soft computing methods", Struct., 31, 1141-1162. https://doi.org/10.1016/j.istruc.2021.02.015.
- Pacheco-Torgal, F., Castro-Gomes, J. and Jalali, S. (2008), "Alkali-activated binders: A review. Part 1. Historical background, terminology, reaction mechanisms and hydration products", Constr. Build. Mater., 22(7), 1305-1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015.
- Provis, J.L. and Bernal, S.A. (2014), "Geopolymers and Related Alkali-Activated Materials", Ann. Rev. Mater. Res., 44(1), 299-327. https://doi.org/10.1146/annurev-matsci-070813-113515.
- Rai, B., Roy, L.B. and Rajjak, M. (2018), "A statistical investigation of different parameters influencing compressive strength of fly ash induced geopolymer concrete", Struct. Concrete, 19(5), 1268-1279. https://doi.org/10.1002/suco.201700193.
- Rajeshwari, R. and Mandal, S. (2020), "Prediction of fly ash concrete compressive strengths using soft computing techniques", Compu. Concrete, 25(1), 83-94. https://doi.org/10.12989/cac.2020.25.1.083.
- Rangan, B. V. (2010), "Fly ash-based geopolymer concrete", Proceedings of the International Workshop on Geopolymer Cement and Concrete, December.
- Rattanasak, U. and Chindaprasirt, P. (2009), "Influence of NaOH solution on the synthesis of fly ash geopolymer", Min. Eng., 22(12), 1073-1078. https://doi.org/10.1016/j.mineng.2009.03.022.
- Samui, P. (2013), "Determination of compressive strength of concrete by statistical learning algorithms", Eng. J., 17(1), 111-119. https://doi.org/10.4186/ej.2013.17.1.111.
- Samui, P. (2015), "Prediction of fracture parameters of concrete by relevance vector machine", Int. J. Eng. Res. Africa, 17, 1-7. https://doi.org/10.4028/www.scientific.net/JERA.17.1.
- Samui, P. and Dixon, B. (2012), "Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs", Hydrolog. Proc., 26(9), 1361-1369. https://doi.org/10.1002/hyp.8278.
- Sattar, A.M.A., Gharabaghi, B. and McBean, E.A. (2016), "Prediction of timing of watermain failure using gene expression models", Water Resour. Manage., 30(5), 1635-1651. https://doi.org/10.1007/s11269-016-1241-x.
- Searson, D.P., Leahy, D.E. and Willis, M.J. (2010), "GPTIPS: An open source genetic programming toolbox for multigene symbolic regression", Proceedings of the International MultiConference of Engineers and Computer Scientists 2010, IMECS 2010.
- Searson, D., Willis, M. and Montague, G. (2007), "Co-evolution of non-linear PLS model components", J. Chemom., 2, 592-603. https://doi.org/10.1002/cem.1084.
- Shaghaghi, S., Bonakdari, H., Gholami, A., Ebtehaj, I. and Zeinolabedini, M. (2017), "Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design", Appl. Math. Comput., 313(C), 271-286. https://doi.org/10.1016/j.amc.2017.06.012.
- Shahmansouri, A.A., Bengar, A.H. and AzariJafari, H. (2021), "Life cycle assessment of eco-friendly concrete mixtures incorporating natural zeolite in sulfate-aggressive environment", Constr. Build. Mater., 268, 121136. https://doi.org/10.1016/j.conbuildmat.2020.121136.
- Shahmansouri, A.A., Bengar, A.. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326.
- Shahmansouri, A.A., Nematzadeh, M. and Behnood, A. (2021), "Mechanical properties of GGBFS-based geopolymer concrete incorporating natural zeolite and silica fume with an optimum design using response surface method", J. Build. Eng., 36, 102138. https://doi.org/10.1016/j.jobe.2020.102138.
- Shahmansouri, A.A., Yazdani, M., Ghanbari, S., Akbarzadeh Bengar, H., Jafari, A. and Farrokh Ghatte, H. (2021), "Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite", J. Clean. Prod., 279, 123697. https://doi.org/10.1016/j.jclepro.2020.123697.
- Silva, P., De Sagoe-Crenstil, K. and Sirivivatnanon, V. (2007), "Kinetics of geopolymerization: Role of Al2O3 and SiO2", Cement Concrete Res., 37(4), 512-518. https://doi.org/10.1016/j.cemconres.2007.01.003.
- Skvara, F., Svoboda, P., Dolezal, J., Kopecky, L., Pawlasova, S., Myskova, L., Lucuk, M., Dvoracek, K., Beksa, M. and Sulc, R. (2006), "Concrete based on fly ash geopolymer", Materials, Experimentation, Maintenance and Rehabilitation - Proceedings of the 10th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2010.
- Song, X. (2007), "Development and performance of Class F fly ash based geopolymer concretes against sulphuric acid attack", The University of New South Wales.
- Songpiriyakij, S., Kubprasit, T., Jaturapitakkul, C. and Chindaprasirt, P. (2010), "Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer", Constr. Build. Mater., 24(3), 236-240. https://doi.org/10.1016/j.conbuildmat.2009.09.002.
- Taylor, K.E. (2001), "Summarizing multiple aspects of model performance in a single diagram", J. Geophys. Res. Atmosphere., 106(7), 7183-7192. https://doi.org/10.1029/2000JD900719.
- Tennakoon, C., Nazari, A., Sanjayan, J.G. and Sagoe-Crentsil, K. (2014), "Distribution of oxides in fly ash controls strength evolution of geopolymers", Constr. Build. Mater., 74, 72-82. https://doi.org/10.1016/j.conbuildmat.2014.08.016.
- Tipping, M. (2001), "Sparse Bayesian learning and the relevance vector mach", J. Mach. Learn. Res., 1, 211-244. https://doi.org/10.1162/15324430152748236.
- Zuda, L., Pavlik, Z., Rovnanikova, P., Bayer, P. and Cerny, R. (2006), "Properties of alkali activated aluminosilicate material after thermal load", Int. J. Thermophys., 27(4), 1250-1263. https://doi.org/10.1007/s10765-006-0077-7.