References
- Aleksandrov, V.M. (2006), "Two problems with mixed boundary conditions for an elastic orthotropic strip", J. Appl. Math. Mech., 70(1), 128-138. http://doi.org/10.1016/j.jappmathmech.2006.03.003.
- Alinia, Y. and Guler, M.A. (2017), "On the fully coupled partial slip contact problems of orthotropic materials loaded by flat and cylindrical indenters", Mech. Mater., 114, 119-133. http://doi.org/10.1016/j.mechmat.2017.08.005.
- Alinia, Y., Hosseini-nasab, M. and Guler, M.A. (2018), "The sliding contact problem for an orthotropic coating bonded to an isotropic substrate", Eur. J. Mech. A-Solid., 70, 156-171. http://doi.org/10.1016/j.euromechsol.2018.02.010.
- Alinia, Y., Zakerhaghighi, H., Adibnazari, S. and Guler, M.A. (2017), "Rolling contact problem for an orthotropic medium", Acta Mech., 228(2), 447-464. http://doi.org/10.1007/s00707-016-1718-y.
- Arslan, O. (2020), "Frictional contact problem of an anisotropic laterally graded layer loaded by a sliding rigid stamp", P. I. Mech. Eng. C-J. Mech., 234(10), 2024-2041. http://doi.org/10.1177/0954406220916486.
- Arslan, O. and Dag, S. (2018), "Contact mechanics problem between an orthotropic graded coating and a rigid punch of an arbitrary profile", Int. J. Mech. Sci., 135, 541-554. http://doi.org/10.1016/j.ijmecsci.2017.12.017.
- Binienda, W.K. and Pindera, M.-J. (1994), "Frictionless contact of layered metal-matrix and polymer-matrix composite half planes", Compos. Sci. Technol., 50(1), 119-128. https://doi.org/10.1016/0266-3538(94)90131-7.
- Birinci, A. and Erdol, R. (2003), "A frictionless contact problem for two elastic layers supported by a Winkler foundation", Struct. Eng. Mech., 15(3), 331-344. https://doi.org/10.12989/sem.2003.15.3.331.
- Buczkowski, R. and Kleiber, M. (1997), "Elasto-plastic interface model for 3D-frictional orthotropic contact problems", Int. J. Numer. Meth. Eng., 40(4), 599-619. https://doi.org/10.1002/(SICI)1097-0207(19970228).
- Comez, I. (2003), "Rijit bir panc ile bastirilmis ve tabanda tam olarak bagli agirliksiz cift serit problemi (Double strip problem entirely supperted on bottom and compressed with a rigid punch)", Master Thesis, Karadeniz Technical University, Graduate Institute of Natural and Applied Sciences, Civil Engineering Department, Trabzon, Turkey. (in Turkish)
- Comez, I. (2019), "Frictional moving contact problem of an orthotropic layer indented by a rigid cylindrical punch", Mech. Mater., 133, 120-127. http://doi.org/10.1016/j.mechmat.2019.02.012.
- Comez, I. and Guler, M.A. (2020), "On the contact problem of a moving rigid cylindrical punch sliding over an orthotropic layer bonded to an isotropic half plane", Math. Mech. Solid., 25(10), 1924-1942. http://doi.org/10.1177/1081286520915272.
- Comez, I. and Yilmaz, K.B. (2019), "Mechanics of frictional contact for an arbitrary oriented orthotropic material", Z Angew Math Mech., 99(3), e201800084. https://doi.org/10.1002/zamm.201800084.
- Comez, I., Yilmaz, K.B., Guler, M.A. and Yildirim, B. (2019), "On the plane frictional contact problem of a homogeneous orthotropic layer loaded by a rigid cylindrical stamp", Arch. Appl. Mech., 89(7), 1403-1419. https://doi.org/10.1007/s00419-019-01511-6.
- Eck, C. and Jarusek, J. (2008), "Solvability of static contact problems with coulomb friction for orthotropic material", J. Elast., 93(1), 93-104. http://doi.org/10.1007/s10659-008-9168-y.
- Erbas, B., Yusufoglu, E. and Kaplunov, J. (2011), "A plane contact problem for an elastic orthotropic strip", J. Eng. Math., 70(4), 399-409. http://doi.org/10.1007/s10665-010-9422-8.
- Erdogan, F. and Gupta, G. (1972), "On the numerical solutions of singular integral equations", Q. J. Appl. Math., 29, 525-534. https://doi.org/10.1090/qam/408277
- Gasmi, A., Joseph, P.F., Rhyne, T.B. and Cron, S.M. (2012), "The effect of transverse normal strain in contact of an orthotropic beam pressed against a circular surface", Int. J. Solid. Struct., 49(18), 2604-2616. http://doi.org/10.1016/j.ijsolstr.2012.05.022.
- Guler, M.A. (2014), "Closed-form solution of the two-dimensional sliding frictional contact problem for an orthotropic medium", Int. J. Mech. Sci., 87, 72-88. http://doi.org/10.1016/j.ijmecsci.2014.05.033.
- Guler, M.A., Kucuksucu, A., Yilmaz, K.B. and Yildirim, B. (2017), "On the analytical and finite element solution of plane contact problem of a rigid cylindrical punch sliding over a functionally graded orthotropic medium", Int. J. Mech. Sci., 120, 12-29. http://doi.org/10.1016/j.ijmecsci.2016.11.004.
- Hakobyan, V.N. and Dashtoyan, L.L. (2013), "Contact problem for an orthotropic plane with a slit", Mech. Compos. Mater., 49(5), 507-518. http://doi.org/10.1007/s11029-013-9367-x.
- Hayashi, T. and Koguchi, H. (2015), "Adhesive contact analysis for anisotropic materials considering surface stress and surface elasticity", Int. J. Solid. Struct., 53, 138-147. http://doi.org/10.1016/j.ijsolstr.2014.10.006.
- Kagadii, T.S. and Pavlenko, A.V. (2003), "Contact problem for an elastic orthotropic half-strip", Int. Appl. Mech., 39(10), 1179-1187. http://doi.org/10.1023/B:INAM.0000010369.53309.1d.
- Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
- Kucuksucu, A., Guler, M.A. and Avci, A. (2014), "Closed-form solution of the frictional sliding contact problem for an orthotropic elastic half-plane indented by a wedge-shaped punch", Key Eng. Mater., 618, 203-225. http://doi.org/10.4028/www.scientific.net/KEM.618.203.
- Kucuksucu, A., Guler, M.A. and Avci, A. (2015), "Mechanics of sliding frictional contact for a graded orthotropic half-plane", Acta Mech., 226(10), 3333-3374. http://doi.org/10.1007/s00707-015-1374-7.
- Li, X.Y. and Wang, M.Z. (2006), "On the anisotropic piezoelastic contact problem for an elliptical punch", Acta Mech., 186(1-4), 87-98. http://doi.org/10.1007/s00707-006-0365-0.
- Liu, Z., Yan, J. and Mi, C. (2018), "On the receding contact between a two-layer inhomogeneous laminate and a half-plane", Struct. Eng. Mech., 66(3), 329-341. http://doi.org/10.12989/sem.2018.66.3.329.
- Mohamed, S.A., Helal, M.M. and Mahmoud, F.F. (2006), "An incremental convex programming model of the elastic frictional contact problems", Struct. Eng. Mech., 23(4), 431-447. http://doi.org/10.12989/sem.2006.23.4.431.
- Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J. Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625.
- Pasternak, E.G. (1999), "Stress distribution at the contact of absolutely rigid stamp and elastic orthotropic strip", J. Elast., 56(1), 1-15. http://doi.org/10.1023/A:1007612807691.
- Pozharskii, D.A. (2017), "Contact problem for an orthotropic half-space", Mech. Solid.+, 52(3), 315-322. http://doi.org/10.3103/s0025654417030086.
- Reddy, J.N. (2003). Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
- Rodriguez-Tembleque, L. and Abascal, R. (2013), "Fast FE-BEM algorithms for orthotropic frictional contact", Int. J. Numer. Meth. Eng., 94(7), 687-707. http://doi.org/10.1002/nme.4479.
- Seitz, A., Popp, A. and Wall, W.A. (2015), "A semi-smooth Newton method for orthotropic plasticity and frictional contact at finite strains", Comput. Meth. Appl. M., 285, 228-254. http://doi.org/10.1016/j.cma.2014.11.003.
- Shen, J.J., Wu, Y.Y., Lin, J.X., Xu, F.Y. and Li, C.G. (2018), "Partial slip problem in frictional contact of orthotropic elastic half-plane and rigid punch", Int. J. Mech. Sci., 135, 168-175. http://doi.org/10.1016/j.ijmecsci.2017.11.022.
- Shi, D., Lin, Y. and Ovaert, T.C. (2003), "Indentation of an orthotropic half-space by a rigid ellipsoidal indenter", J. Tribol-T ASME, 125(2), 223-231. http://doi.org/10.1115/1.1537743.
- Swanson, S.R. (2004), "Hertzian contact of orthotropic materials", Int. J. Solid. Struct., 41(7), 1945-1959. http://doi.org/10.1016/j.ijsolstr.2003.11.003.
- Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2021), "Application of differential quadrature and Newmark methods for dynamic response in pad concrete foundation covered by piezoelectric layer", J. Comput. Appl. Math., 382, 113075. https://doi.org/10.1016/j.cam.2020.113075.
- Yildirim, B., Yilmaz, K.B., Comez, I. and Guler, M.A. (2019), "Double frictional receding contact problem for an orthotropic layer loaded by normal and tangential forces", Meccanica, 54, 2183-2206. https://doi.org/10.1007/s11012-019-01058-4.
- Yilmaz, K.B., Comez, I., Guler, M.A. and Yildirim, B. (2019), "Analytical and finite element solution of the sliding frictional contact problem for a homogeneous orthotropic coating-isotropic substrate system", Z Angew Math Mech., 99(3), https://doi.org/10.1002/zamm.201800117.
- Yilmaz, K.B., Comez, I., Guler, M.A. and Yildirim, B. (2019), "The effect of orthotropic material gradation on the plane sliding frictional contact mechanics problem", J. Strain Anal., 54(4), 254-275. http://doi.org/10.1177/0309324719859110.
- Zakerhaghighi, H., Adibnazari, S., Guler, M.A. and Faghidian, S.A. (2017), "Two-dimensional analysis of the fully coupled rolling contact problem between a rigid cylinder and an orthotropic medium", Z. Angew. Math. Mech., 97(10), 1283-1304. http://doi.org/10.1002/zamm.201600281.
- Zehil, G.P. and Gavin, H.P. (2014), "Two and three-dimensional boundary element formulations of compressible isotropic, transversely isotropic and orthotropic viscoelastic layers of arbitrary thickness, applied to the rolling resistance of rigid cylinders and spheres", Eur. J. Mech. A-Solid., 44, 175-187. http://doi.org/10.1016/j.euromechsol.2013.10.015.
- Zhou, S.X. and Li, X.F. (2019), "Interfacial debonding of an orthotropic half-plane bonded to a rigid foundation", Int. J. Solid. Struct., 161, 1-10. http://doi.org/10.1016/j.ijsolstr.2018.11.003.