참고문헌
- Aggarwal, R., Kumar, M., Sharma, R.K. and Sharma, M.K. (2015), "Predicting compressive strength of concrete", Int. J. Appl. Sci. Eng., 13(2), 171-185. https://doi.org/10.6703/IJASE.2015.13(2).171.
- Ahmed, M.A., Mallick, J. and Hasan, M.A. (2016), "A study of factors affecting the flexural tensile strength of concrete", J. King Saud Univ.-Eng. Sci., 28(2), 147-156. https://doi.org/10.1016/j.jksues.2014.04.001.
- Al-Ghalib, A.A. and Mohammad, F.A. (2016), "Damage and repair classification in reinforced concrete beams using frequency domain data", Mater. Struct., 49(5), 1893-1903. https://doi.org/10.1617/s11527-015-0621-7.
- Aldahdooh, M.A.A., Bunnori, N.M. and Johari, M.A.M. (2013), "Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method", Mater. Des., 52, 957-965. https://doi.org/10.1016/j.matdes.2013.06.034.
- Arizio, E., Piazza, R., Cairns, W.R.L., Appolonia, L. and Botteon, A. (2013), "Statistical analysis on ancient mortars : A case study of the Balivi Tower in Aosta (Italy)", Constr. Build. Mater., 47, 1309-1316. https://doi.org/10.1016/j.conbuildmat.2013.06.026.
- Bal, L. and Buyle-Bodin, F. (2013), "Artificial neural network for predicting drying shrinkage of concrete", Constr. Build. Mater., 38, 248-254. https://doi.org/10.1016/j.conbuildmat.2012.08.043.
- Bartlett, M.S. (1950), "Tests of significance in factor analysis", Br. J. Stat. Psychol., 3(2), 77-85. https://doi.org/10.1111/j.2044-8317.1950.tb00285.x
- Boukhatem, B., Kenai, S., Hamou, A.T., Ziou, D. and Ghrici, M. (2012, "Predicting concrete properties using neural networks (NN) with principal component analysis (PCA) technique", Comput. Concrete, 10(6), 557-573. https://doi.org/10.12989/cac.2012.10.6.557.
- Boukhatem, B., Kenai, S., Tagnit-Hamou, A. and Ghrici, M. (2011), "Application of new information technology on concrete: an overview", J. Civil Eng. Manage., 17(2), 248-258. https://doi.org/10.3846/13923730.2011.574343.
- Calabrese, L., Campanella, G. and Proverbio, E. (2012), "Noise removal by cluster analysis after long time AE corrosion monitoring of steel reinforcement in concrete", Constr. Build. Mater., 34, 362-371. https://doi.org/10.1016/j.conbuildmat.2012.02.046.
- Chou, J., Ngo, N. and Pham, A. (2015), "Shear strength prediction in reinforced concrete deep beams using nature-inspired metaheuristic support vector regression", J. Comput. Civil Eng., 30(1), 1-9. https://doi.org/10.1061/(asce)cp.1943-5487.0000466.
- Degala, S., Rizzo, P., Ramanathan, K. and Harries, K.A. (2009), "Acoustic emission monitoring of CFRP reinforced concrete slabs", Constr. Build. Mater., 23(5), 2016-2026. https://doi.org/10.1016/j.conbuildmat.2008.08.026.
- Falchi, L., Varin, C., Toscano, G. and Zendri, E. (2015), "Statistical analysis of the physical properties and durability of water-repellent mortars made with limestone cement, natural hydraulic lime and pozzolana-lime", Constr. Build. Mater., 78, 260-270. https://doi.org/10.1016/j.conbuildmat.2014.12.109.
- Filho, F.M.A., Barragan, B.E., Casas, J.R. and El Debs, A.L.H.C. (2010), "Hardened properties of self-compacting concrete - A statistical approach", Constr. Build. Mater., 24, 1608-1615. https://doi.org/10.1016/j.conbuildmat.2010.02.032.
- Folliard, K.J., Juenger, M., Schindler, A., Riding, K., Poole, Jonathan, Kallivokas, L.F., Slatnick, S., Whigham, J. and Meadows, J.L. (2008), "Prediction model for concrete behavior-Final report", FHWA/TX-08/0-4563-1, Center for Transportation Research, The University of Texas.
- Ghizdavet, Z., stefan, B.M., Nastac, D., Vasile, O. and Bratu, M. (2016), "Sound absorbing materials made by embedding crumb rubber waste in a concrete matrix", Constr. Build. Mater., 124, 755-763. https://doi.org/10.1016/j.conbuildmat.2016.07.145.
- Gonzalez-Taboada, I., Gonzalez-Fonteboa, B., Martinez-Abella, F. and Perez-Ordonez, J. L. (2016), "Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming", Constr. Build. Mater., 106, 480-499. https://doi.org/10.1016/j.conbuildmat.2015.12.136.
- Gryllias, K., Koukoulis, I., Yiakopoulos, C., Antoniadis, I. and Provatidis, C. (2009), "Morphological processing of proper orthogonal modes for crack detection in beam structures", J. Mech. Mater. Struct., 4(6), 1063-1088. https://doi.org/10.2140/jomms.2009.4.1063.
- Gulotta, D., Goidanich, S., Tedeschi, C. and Toniolo, L. (2015), "Commercial NHL-containing mortars for the preservation of historical architecture. Part 2: Dsurability to salt decay", Constr. Build. Mater., 96, 198-208. https://doi.org/10.1016/j.conbuildmat.2015.08.006.
- Hellebois, A., Launoy, A., Pierre, C., De Laneve, M. and Espion, B. (2013), "100-year-old Hennebique concrete, from composition to performance", Constr. Build. Mater., 44, 149-160. https://doi.org/10.1016/j.conbuildmat.2013.03.017.
- Jeffers, J.N.R. (1967), "Two case studies in the application of principal component analysis", J. R. Stat. Soc. Ser. C (Appl. Stat.), 16(3), 225-236.
- Jolliffe, I.T. (2002), Principal Component Analysis, 2nd Edition, International Encyclopedia of Education, Springer.
- Kellouche, Y., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network", Neur. Comput. Appl., 1-20. https://doi.org/10.1007/s00521-017-3052-2.
- Kheder, G.F., Al Gabban, A.M. and Abid, S.M. (2003), "Mathematical model for the prediction of cement compressive strength at the ages of 7 and 28 days within 24 hours", Mater. Struct., 36(10), 693-701. https://doi.org/10.1007/BF02479504.
- Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25(7), 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X.
- Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H. and Wu, C.G. (2002), "Proper orthogonal decomposition and its applications-Part I: Theory", J. Sound Vib., 252(3), 527-544. https://doi.org/10.1006/jsvi.2001.4041.
- Lu, Y., Li, J., Ye, L. and Wang, D. (2013), "Guided waves for damage detection in rebar-reinforced concrete beams", Constr. Build. Mater., 47, 370-378. https://doi.org/10.1016/j.conbuildmat.2013.05.016.
- Madandoust, R., Ghavidel, R. and Nariman-Zadeh, N. (2010), "Evolutionary design of generalized GMDH-type neural network for prediction of concrete compressive strength using UPV", Comput. Mater. Sci., 49(3), 556-567. https://doi.org/10.1016/j.commatsci.2010.05.050.
- Manoj, A. and Babu Narayan, K.S. (2019), "Proper orthogonal decomposition for generation of organized data in concrete technology", Ukieri Concr. Congr. Concr. Glob. Build., Jalandhar, India, March.
- Manoj, A. and Narayan, K.S.B. (2021), "Application of proper orthogonal decomposition in concrete performance appraisal", Rec. Trend. Civil Eng., 13-21. https://doi.org/10.1007/978-981-15-8293-6_2.
- Mehta, P.K. and Monteiro, P.J.M. (2014), Concrete: Microstructure, Properties, and Materials, 4th Edition, McGraw-Hill Education.
- Moropoulou, A., Polikreti, K., Bakolas, A. and Michailidis, P. (2003). "Correlation of physicochemical and mechanical properties of historical mortars and classification by multivariate statistics", Cement Concrete Res., 33, 891-898. https://doi.org/10.1016/S0008-8846(02)01088-8.
- Newlands, M.D. (2019), "A concrete education: futureproofing for the digital world", Ukieri Concr. Congr. Concr. Glob. Build., Jalandhar, India, March.
- Ni, H.G. and Wang, J.Z. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30(8), 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8.
- Pan, Y., Prado, A., Porras, R., Hafez, O.M. and Bolander, J.E. (2017), "Lattice modeling of early-age behavior of structural concrete", Mater. (Basel), 10(3), 1-34. https://doi.org/10.3390/ma10030231.
- Rampazzi, L., Pozzi, A., Sansonetti, A., Toniolo, L. and Giussani, B. (2006), "A chemometric approach to the characterisation of historical mortars", Cement Concrete Res., 36(6), 1108-1114. https://doi.org/10.1016/j.cemconres.2006.02.002.
- Riding, K.A., Poole, J.L., Folliard, K.J., Juenger, M.C.G. and Schindler, A.K. (2012), "Modeling hydration of cementitious systems", ACI Mater. J., 109(2), 225-234.
- Santos, J.P., Cremona, C., Orcesi, A.D. and Silveira, P. (2016), "Early damage detection based on pattern recognition and data fusion", J. Struct. Eng., 143(2), 04016162. https://doi.org/10.1061/(asce)st.1943-541x.0001643.
- Ta, V.L., Bonnet, S., Senga Kiesse, T. and Ventura, A. (2016), "A new meta-model to calculate carbonation front depth within concrete structures", Constr. Build. Mater., 129, 172-181. https://doi.org/10.1016/j.conbuildmat.2016.10.103.
- Taffese, W.Z. and Sistonen, E. (2017), "Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions", Autom. Constr., 77, 1-14. https://doi.org/10.1016/j.autcon.2017.01.016.
- Thirumalaiselvi, A. and Sasmal, S. (2019), "Acoustic emission monitoring and classification of signals in cement composites during early-age hydration", Constr. Build. Mater., 196, 411-427. https://doi.org/10.1016/j.conbuildmat.2018.11.067.
- Tobias, S. and Carlson, J.E. (1969), "Brief report: Bartlett's test of sphericity and chance findings in factor analysis", Multiv. Behav. Res., 4(3), 375-377. https://doi.org/10.1207/s15327906mbr0403_8
- Yaragal, S.C., Narayan, K.S.B., Venkataramana, K., Kishor, S., Kulkarni, K.S., Gowda, H.C.C., Reddy, G.R. and Sharma, A. (2010), "Studies on normal strength concrete cubes subjected to elevated temperatures", J. Struct. Fire Eng., 1(4), 249-262. https://doi.org/10.1260/2040-2317.1.4.249.
- Yi, S.T., Moon, Y.H. and Kim, J.K. (2005), "Long-term strength prediction of concrete with curing temperature", Cement Concrete Res., 35(10), 1961-1969. https://doi.org/10.1016/j.cemconres.2005.06.010.