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ON THE RATIO OF BIOMASS TO TOTAL CARRYING

CAPACITY IN HIGH DIMENSIONS
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Abstract. This paper is concerned with a reaction-diffusion logistic

model. In [17], Lou observed that a heterogeneous environment with
diffusion makes the total biomass greater than the total carrying capac-

ity. Regarding the ratio of biomass to carrying capacity, Ni [10] raised
a conjecture that the ratio has a upper bound depending only on the

spatial dimension. For the one-dimensional case, Bai, He, and Li [1]

proved that the optimal upper bound is 3. Recently, Inoue and Kuto [13]
showed that the supremum of the ratio is infinity when the domain is a

multi-dimensional ball. In this paper, we generalized the result of [13]

to an arbitrary smooth bounded domain in Rn, n ≥ 2. We use the sub-
solution and super-solution method. The idea of the proof is essentially

the same as the proof of [13] but we have improved the construction of

sub-solutions. This is the complete answer to the conjecture of Ni.

1. Introduction

This paper is concerned with a reaction-diffusion logistic model. After the pi-
oneering work of Skellam [25], many studies on reaction-diffusion logistic model
have been investigated (see [2–5,7–15,17–24,26] and the references therein). To
analyze the effects of diffusion and spatial heterogeneity on the total biomass
of single species, Lou [17] considered the following problem:

(1)


∂u
∂t = d∆u+ u(m(x)− u) in Ω× (0,∞),

∂u
∂ν = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) in Ω,

where Ω is a smooth bounded domain in Rn and ν is the outward unit nor-
mal vector on ∂Ω. Here, the diffusion rate d is positive, the function u(x, t)
represents the density of the species, and m(x) is the local intrinsic growth
rate or carrying capacity. The Neumann boundary condition means that no
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individuals can move across the boundary ∂Ω. We assume that the function
m(x) satisfies the following condition:

(M) m(x) ∈ L∞(Ω),m(x) ≥ 0, and m 6≡ constant on Ω̄.

Biologically, non-constant m(x) indicates the heterogeneous environment which
gives many different properties from the homogeneous environment case. It
is well known that the problem (1) has a positive equilibrium θd,m for any
d > 0 and m(x) satisfying the condition (M). Moreover, the function θd,m is in
W 2,p(Ω) for every p ≥ 1 and it is the unique positive solution of the stationary
problem:

(2)

d∆θ + θ(m(x)− θ) = 0 in Ω,

∂θ
∂ν = 0 on ∂Ω.

For proofs of the above facts, refer to [3]. The following property was first
observed by Lou [17]:

(3)

∫
Ω

θd,m(x) dx >

∫
Ω

m(x) dx

holds for any d > 0 and any m satisfying (M). Indeed, using θ−1
d,m as a test

function of (2), we obtain∫
Ω

(m− θd,m) dx = −d
∫

Ω

|∇θd,m|2

θ2
d,m

dx < 0

since m is a non-constant function. The strict inequality means that the het-
erogeneous environment with diffusion makes the total biomass greater than
the total carrying capacity. Define the supremum of the ratio as

E(m) = sup
d>0

∫
Ω
θd,m(x) dx∫

Ω
m(x) dx

.

Then, from (3), we can see that E(m) > 1 for any m satisfying (M). Regarding
the upper bound, W.-M. Ni raised a following conjecture.

Conjecture 1.1 ([14], Section 2.1). Assume that m satisfies the condition (M).
Then there exists a constant C(n) depending only on n such that E(m) ≤ C(n),
and C(1) = 3.

For the one-dimensional case, Bai, He, and Li [1] validated the conjecture.
They used ordinary differential equation techniques to show C(1) = 3 and then
obtained the optimality of 3 by choosing

dε =
√
ε and mε(x) =

{
0, if x ∈ [0, 1− ε],
1
ε , if x ∈ (1− ε, 1].

In the high dimensional case, Inoue and Kuto [13] recently showed that there is
no upper bound when the domain Ω is a ball. They used the uniqueness of the
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solution of (2) and the sub-solution and super-solution method. The authors
set

dε =
c1
εn−2

and mε(x) =

{
1
εn , if x ∈ Bε,

0, if x ∈ B1 \Bε,
and then constructed the L1 unbounded sequence of sub-solutions. Here, c1
is some positive constant and Br = {x ∈ Rn | |x| < r}. In this paper, we
generalized the result of [13] to all smooth bounded domains in Rn, n ≥ 2. Our
main theorem is stated as follows.

Theorem 1.2. Assume that n ≥ 2. Let Ω be a smooth bounded domain in Rn.
Then

sup{E(m) | m satisfies condition (M)} =∞.

The idea of the proof is essentially the same as the proof of [13], but we have
improved the construction of sub-solutions. In Section 2, we prove Theorem
1.2 and in Section 3, we give some concluding remarks about the ratio E(m)
and related problems.

2. Proof of Theorem 1.2

First, we present the well-known sub-solution and super-solution method.
Consider the following nonlinear elliptic problem:

(4)

d∆u+ p(x, u) = 0 in Ω,

∂u
∂ν = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn and ν is the outer unit normal vec-
tor on ∂Ω. We assume that the function p(x, t) : Ω×R→ R is a Carathéodory
function, that is, p is measurable in x ∈ Ω and continuous in t ∈ R.

Definition ([6], Section 4.2). A function u is called a sub-solution of (4) if
u ∈W 1,2(Ω), p(·, u(·)) ∈ L2(Ω) and∫

Ω

d∇u · ∇ϕ− p(x, u)ϕ dx ≤ 0

for any ϕ ∈W 1,2(Ω), ϕ ≥ 0. It is called a super-solution if the above inequality
is reversed.

Then, the following result is standard.

Proposition 2.1 ([6], Theorem 4.12). Suppose that v and w are sub- and
super-solution of (4), respectively, and v ≤ w a.e. in Ω. Suppose further that
there exists a function k1 ∈ L2(Ω) such that

(5) |p(x, t)| ≤ k1(x)

for a.e. x ∈ Ω and all t ∈ [v(x), w(x)]. Then (4) has a weak solution u satisfying
v ≤ u ≤ w a.e. in Ω.
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Now, using the above proposition, we prove Theorem 1.2. The main part of
the proof is the construction of sub-solutions whose L1(Ω)-norm diverge.

Proof of Theorem 1.2. Without loss of generality, we may assume that 0 ∈ Ω.
Then there is a small r0 > 0 such that Br0 ⊂ Ω. Choose small ε in (0, r0) and
let

dε =
c1
εn−2

and mε =

{
1
εn , if x ∈ Bε,
c2
ern0

, if x ∈ Ω \Bε,

where c1, c2 > 0 are small constants independent of ε, which will be determined
later. Define functions θε, θε : Ω→ R by

θε ≡
1

εn
and θε =


c2
εn e
− |x|

n

εn , if x ∈ Bε,
c2
e|x|n , if x ∈ Br0 \Bε,
c2
ern0

, if x ∈ Ω \Br0 .

Since

dε∆θε + θε(mε(x)− θε) =

0, if x ∈ Bε,
1
εn

(
c2
ern0
− 1

εn

)
, if x ∈ Ω \Bε,

and ∂νθε = 0 on ∂Ω, θε is a super-solution of (2) if c2 ≤ e.
In what follows, we will prove that θε is a sub-solution of (2). We have to

show that

(6)

∫
Ω

dε∇θε · ∇ϕ− θε(mε(x)− θε)ϕ dx ≤ 0

for any ϕ ∈W 1,2(Ω) with ϕ ≥ 0. By the density theorem, we may assume that
ϕ ∈ C∞c (Ω). We divide Ω into three parts,

A1 = Ω \Br0 , A2 = Br0 \Bε, and A3 = Bε,

and denote the restrictions of θε to Ai by

θi = θε|Ai for i = 1, 2, 3.

Then θi is in C2(Ai) for each i = 1, 2, 3 if we extend θi continuously on ∂Ai.
Applying Green’s formula to each region Ai, we obtain∫

Ω

[
−dε∇θε · ∇ϕ+ θε(mε(x)− θε)ϕ

]
dx

=

3∑
i=1

∫
Ai

[−dε∇θi · ∇ϕ+ θi(mε(x)− θi)ϕ] dx

=

3∑
i=1

[∫
Ai

[dε∆θi + θi(mε(x)− θi)]ϕ dx− dε
∫
∂Ai

∂θi
∂νi

ϕ dS

]
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=

∫
Ω\(∂Bε∪∂Br0 )

[
dε∆θε + θε(mε(x)− θε)

]
ϕ dx− dε

3∑
i=1

∫
∂Ai

∂θi
∂νi

ϕ dS,

where νi denotes the outer unit normal vector on ∂Ai, for i = 1, 2, 3. Note that
θε ∈ C1(Ω \ ∂Br0). Indeed, since θε is radial,

c2
εn
e−

rn

εn

∣∣∣
r=ε

=
c2
ern

∣∣∣
r=ε

=
c2
eεn

,

and
∂

∂r

( c2
εn
e−

rn

εn

)∣∣∣∣
r=ε

=
∂

∂r

( c2
ern

)∣∣∣∣
r=ε

= − nc2
eεn+1

,

so we obtain the C1 regularity of θε on ∂Bε. Then, we have∫
Ω

[
−dε∇θε · ∇ϕ+ θε(mε(x)− θε)ϕ

]
dx

=

∫
Ω\(∂Bε∪∂Br0 )

[dε∆θε + θε(mε(x)− θε)]ϕ dx

− dε
∫
∂Br0

∂θ1

∂ν1
ϕ dS − dε

∫
∂Br0

∂θ2

∂ν2
ϕ dS.

By the definition of θε, we immediately get∫
∂Br0

∂θ1

∂ν1
ϕ dS = 0 and

∫
∂Br0

∂θ2

∂ν2
ϕ dS ≤ 0

for any ϕ ∈ W 1,2(Ω) with ϕ ≥ 0. Thus, to prove the inequality (6), it suffices
to show that

(7) dε∆θε + θε(mε(x)− θε) ≥ 0 in Ω \ (∂Bε ∪ ∂Br0).

From now on, with some abuse of notation, we regard functions mε, θε as
functions of one variable and write mε(r) = mε(x) and θε(r) = θε(x). That is,

mε(r) =

{
1
εn , if 0 ≤ r ≤ ε,
c2
ern0

, if ε < r,

and

θε(r) =


c2
εn e
− rnεn , if 0 ≤ r ≤ ε,

c2
ern , if ε < r ≤ r0,

c2
ern0

, if r0 < r.

A simple calculation shows that

θ′ε(r) =


−nc2r

n−1

ε2n e−
rn

εn , if 0 ≤ r ≤ ε,

− nc2
ern+1 , if ε < r < r0,

0, if r0 < r,
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and

θ′′ε (r) =


n(n−1)c2r

n−2

ε2n

(
nrn

(n−1)εn − 1
)
e−

rn

εn , if 0 ≤ r < ε,

n(n+1)c2
ern+2 , if ε < r < r0,

0, if r0 < r,

where ′ means d/dr. Then, the inequality (7) is equivalent to

(8) dε

(
θ′′ε +

n− 1

r
θ′ε

)
+ θε(m(r)− θε) ≥ 0,

where r ∈ {r = |x| > 0 | x ∈ Ω\(∂Bε∪∂Br0)}. Note that the assumption n ≥ 2
implies that θ′ε(0) = 0. The following part of the proof is same as that of [13],
but for the convenience of readers we repeat the proof here. A straightforward
calculation gives

dε

(
θ′′ε +

n− 1

r
θ′ε

)
+ θε(m(r)− θε)

= e−
rn

εn

(
n2c1c2r

2n−2

ε4n−2
− 2n(n− 1)c1c2r

n−2

ε3n−2
+

c2
ε2n
− c22
ε2n

e−
rn

εn

)
≥ c2
ε2n
− 2n(n− 1)c1c2

ε2n
− c22
ε2n

=
c2
ε2n

(1− 2n(n− 1)c1 − c2)

for r ∈ (0, ε), and

dε

(
θ′′ε +

n− 1

r
θ′ε

)
+ θε(m(r)− θε)

=
2nc1c2

eεn−2rn+2
+

c22
e2rnrn0

− c22
e2r2n

≥ 2nc1c2
eεn−2rn+2

− c22
e2r2n

≥ c2
ern+2

(
2nc1
εn−2

− c2
eεn−2

)
for r ∈ (ε, r0). Note that, if r > r0,

dε

(
θ′′ε +

n− 1

r
θ′ε

)
+ θε(m(r)− θε) = 0.

Thus, (8) holds for c1, c2 > 0 satisfying

(9) 1− 2n(n− 1)c1 − c2 ≥ 0 and 2nc1 −
c2
e
≥ 0.

It is easily checked that if (c1, c2) are in the triangle T ⊂ R2 whose vertices are

(0, 0),

(
1

2n(e+ n− 1)
,

e

e+ n− 1

)
,

(
1

2n(n− 1)
, 0

)
,
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then (9) holds. Therefore, θε is a sub-solution of (2) if (c1, c2) ∈ T .

Figure 1. Region T : θε is a sub-solution if (c1, c2) ∈ T

Fix a pair of constants (c1, c2) ∈ T . Then c2 < 1, which implies that θε is
a super-solution and θε < θε. Since 0 < θε and θε ≡ 1/εn, the condition (5)
immediately follows from the fact that mε(x) ∈ L∞(Ω). Then, there is a weak
solution θε of (2) satisfying

θε ≤ θε ≤ θε,
by Proposition 2.1. Since the weak solution of (2) is unique, we get θε = θdε,mε .
On the other hand, by a direct calculation, we have

‖θε‖L1(Ω) ≥ ‖θε‖L1(Br0\Bε)

≥ ωn
∫ r0

ε

θε(r)r
n−1 dr

≥ c2ωn
e

∫ r0

ε

1

r
dr

=
c2ωn
e

(log r0 − log ε),

and
‖mε‖L1(Ω) = |B1|+

c2
ern0
|Ω \Bε|,

where ωn is the surface area of the unit sphere in Rn and | · | denotes the n-
dimensional volume. Hence, there is a constant C = C(n) depending only on
n, such that

‖θε‖L1(Ω)

‖mε‖L1(Ω)
≥ C| log ε|.

Then, we obtain

lim
ε→0

E(mε) ≥ lim
ε→0

‖θdε,mε‖L1(Ω)

‖mε‖L1(Ω)
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≥ lim
ε→0

‖θε‖L1(Ω)

‖mε‖L1(Ω)

≥ lim
ε→0

C| log ε|

=∞,

which completes the proof since every mε satisfies the condition (M). �

3. Concluding remarks

In the study of the Lotka-Volterra competition model, it is known that the
ratio E(m) plays an important role in the dynamics of the system. Consider
the following two-species competition model:

(10)



∂U
∂t = d1∆U + U(m(x)− U − cV ) in Ω× (0,∞),

∂V
∂t = d2∆V + V (m(x)− bU − V ) in Ω× (0,∞),

∂U
∂ν = ∂V

∂ν = 0 on ∂Ω× (0,∞),

U(x, 0) = U0(x), V (x, 0) = V0(x) in Ω,

with 0 < b, c < 1, where b and c represent interspecific competition coefficients.
Define

ΣU = {(d1, d2) ∈ (0,∞)× (0,∞) | (θd1,m, 0) is linearly stable}.

In [17], Lou proved the following:

Theorem 3.1. Assume that m satisfies the condition (M). Then,

ΣU 6= ∅ if and only if b >
1

E(m)
.

Moreover, there exists c∗ = c∗(b,Ω,m) ∈ (0, 1] such that if c ∈ (0, c∗) and
(d1, d2) ∈ ΣU , then (θd1,m, 0) is globally asymptotically stable.

In addition, Lou [17] conjectured that the theorem above holds for any
c ∈ (0, 1). Lam and Ni [16] proved Lou’s conjecture for small c, without
the dependence of b ∈ (0, 1). More recently, He and Ni [10] completely solved
the conjecture. In [10], the authors assumed that b, c > 0 are in the range
bc ≤ 1 and analyzed the global dynamics of system (10). The results on the
global dynamics are divided according to the values of b and c. Here, the value
1/E(m) was used as the threshold. For example,

(i) if b, c ∈ (0, 1/E(m)], then for all d1, d2 > 0, (10) has a unique coexistence
steady state that is globally asymptotically stable,

(ii) if b ∈ (1/E(m), 1] and c ∈ (0, 1/E(m)], then either (θd1,m, 0) is globally
asymptotically stable or (10) has a unique coexistence steady state that
is globally asymptotically stable,
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refer to Theorem 1.1 in [10] for more details. Thus, their result tells us that
“diffusion-driven exclusion” phenomenon occurs only when the competition
coefficient b or c is larger than the threshold value 1/E(m).

Our result shows that, for n ≥ 2, resource concentration sends the value
E(m) to ∞. It can be interpreted as the more resources are concentrated
in one place, the more likely extinction will occur despite weaker competition
between the two species. It is biologically reasonable because the concentration
of resources accelerates competition.

Very recently, Mazari and Ruiz-Balet [21] observed a fragmentation phenom-
enon for small diffusion rates. Roughly, this phenomenon means that in order
to increase the total biomass, the smaller the diffusion rate, the more resources
must be fragmented. They dealt with the typical domain n-dimensional box,

Ω =

n∏
i=1

[0, 1].

On this domain, for given resource m and the corresponding solution θd,m, the
authors constructed fragmented resources {mk}∞k=1 such that

(11)

∫
Ω

θ d

4k
,mk

dx =

∫
Ω

θd,m dx,

where k = 1, 2, 3, . . .. For the precise construction and the proof, see [21]. Note
that, in our main theorem, we chose

dε =
c1
εn−2

,

which goes to ∞ as ε → 0 if n ≥ 3. Thus, if Ω is a box, we can reselect {mε}
with a fixed diffusion rate such that

E(mε)→∞,

using (11). From this fact, it can be seen that the large diffusion rate is probably
not a crucial factor in sending the ratio E(m) to ∞.

Additionally, it is natural to consider the problem of maximizing the total
biomass when the diffusion rate d is fixed and the amount of resources is limited.
This problem was suggested by Lou [18]. In [18], he mentioned without the
proof that the total biomass is unbounded for high dimensional habitats if m
is in the class

{m ∈ L∞(Ω) | m ≥ 0,

∫
Ω

m dx = m0|Ω|},

where m0 > 0 is a given real number. It can be supported by our main theorem
(or by Theorem 2.2 in [13]) for n = 2, and by the above remark for n ≥ 3.
Accordingly, for this problem, the following smaller class was introduced in
[18]:

M = {m ∈ L∞(Ω) | 0 ≤ m ≤ κ,
∫

Ω

m dx = m0|Ω|},
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where κ > 0 and m0 ∈ (0, κ). This class was used in [4, 20–22], and in [4],
it is proved that there exists a maximizer of total biomass on M. However,
regarding qualitative properties of the maximizer, very few things are known,
see [20–22]. The next possible step will be the study of this direction and we
hope to discuss this issue in the future work.

Acknowledgement. This work was supported by 2020 Long-Term KAIST
Undergraduate Research Program under the guidance of Professor Jaeyoung
Byeon. The second author was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MIST) (No. NRF-
2019R1A5A1028324).

References

[1] X. Bai, X. He, and F. Li, An optimization problem and its application in population

dynamics, Proc. Amer. Math. Soc. 144 (2016), no. 5, 2161–2170. https://doi.org/10.
1090/proc/12873

[2] H. Berestycki, F. Hamel, and H. Matano, Bistable traveling waves around an obstacle,

Comm. Pure Appl. Math. 62 (2009), no. 6, 729–788. https://doi.org/10.1002/cpa.
20275

[3] R. S. Cantrell and C. Cosner, Spatial ecology via reaction-diffusion equations, Wiley Se-

ries in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester,
2003. https://doi.org/10.1002/0470871296

[4] W. Ding, H. Finotti, S. Lenhart, Y. Lou, and Q. Ye, Optimal control of growth coefficient

on a steady-state population model, Nonlinear Anal. Real World Appl. 11 (2010), no. 2,
688–704. https://doi.org/10.1016/j.nonrwa.2009.01.015

[5] J. Dockery, V. Hutson, K. Mischaikow, and M. Pernarowski, The evolution of slow
dispersal rates: a reaction diffusion model, J. Math. Biol. 37 (1998), no. 1, 61–83.

https://doi.org/10.1007/s002850050120

[6] Y. Du, Order structure and topological methods in nonlinear partial differential equa-
tions. Vol. 1, Series in Partial Differential Equations and Applications, 2, World Sci-

entific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. https://doi.org/10.1142/

9789812774446

[7] X. He, K. Lam, Y. Lou, and W. Ni, Dynamics of a consumer-resource reaction-diffusion

model, J. Math. Biol. 78 (2019), no. 6, 1605–1636. https://doi.org/10.1007/s00285-

018-1321-z

[8] X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra

competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations

254 (2013), no. 2, 528–546. https://doi.org/10.1016/j.jde.2012.08.032
[9] , The effects of diffusion and spatial variation in Lotka-Volterra competition-

diffusion system II: The general case, J. Differential Equations 254 (2013), no. 10,
4088–4108. https://doi.org/10.1016/j.jde.2013.02.009

[10] , Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion

and spatial heterogeneity I, Comm. Pure Appl. Math. 69 (2016), no. 5, 981–1014. https:
//doi.org/10.1002/cpa.21596

[11] , Global dynamics of the Lotka-Volterra competition-diffusion system with equal
amount of total resources, II, Calc. Var. Partial Differential Equations 55 (2016), no. 2,

Art. 25, 20 pp. https://doi.org/10.1007/s00526-016-0964-0

[12] , Global dynamics of the Lotka-Volterra competition-diffusion system with equal
amount of total resources, III, Calc. Var. Partial Differential Equations 56 (2017), no. 5,

Paper No. 132, 26 pp. https://doi.org/10.1007/s00526-017-1234-5

https://doi.org/10.1090/proc/12873
https://doi.org/10.1090/proc/12873
https://doi.org/10.1002/cpa.20275
https://doi.org/10.1002/cpa.20275
https://doi.org/10.1002/0470871296
https://doi.org/10.1016/j.nonrwa.2009.01.015
https://doi.org/10.1007/s002850050120
https://doi.org/10.1142/9789812774446
https://doi.org/10.1142/9789812774446
https://doi.org/10.1007/s00285-018-1321-z
https://doi.org/10.1007/s00285-018-1321-z
https://doi.org/10.1016/j.jde.2012.08.032
https://doi.org/10.1016/j.jde.2013.02.009
https://doi.org/10.1002/cpa.21596
https://doi.org/10.1002/cpa.21596
https://doi.org/10.1007/s00526-016-0964-0
https://doi.org/10.1007/s00526-017-1234-5


ON THE RATIO OF BIOMASS TO TOTAL CARRYING CAPACITY 1237

[13] J. Inoue and K. Kuto, On the unboundedness of the ratio of species and resources for

the diffusive logistic equation, Discrete Contin. Dyn. Syst. Ser. B 26 (2021), no. 5,

2441–2450. https://dx.doi.org/10.3934/dcdsb.2020186
[14] K.-Y. Lam, S. Liu, and Y. Lou, Selected topics on reaction-diffusion-advection models

from spatial ecology, Math. Appl. Sci. Eng. 1 (2020), no. 2, 150–180. https://doi.org/
10.5206/mase/10644

[15] K.-Y. Lam and Y. Lou, Persistence, competition, and evolution, in The dynamics of

biological systems, 205–238, Math. Planet Earth, 4, Springer, Cham., 2019. https:

//doi.org/10.1007/978-3-030-22583-4_8

[16] K.-Y. Lam and W.-M. Ni, Uniqueness and complete dynamics in heterogeneous

competition-diffusion systems, SIAM J. Appl. Math. 72 (2012), no. 6, 1695–1712.
https://doi.org/10.1137/120869481

[17] Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple

species, J. Differential Equations 223 (2006), no. 2, 400–426. https://doi.org/10.1016/
j.jde.2005.05.010

[18] , Some challenging mathematical problems in evolution of dispersal and popula-
tion dynamics, in Tutorials in mathematical biosciences. IV, 171–205, Lecture Notes in

Math., 1922, Math. Biosci. Subser, Springer, Berlin, 2008. https://doi.org/10.1007/

978-3-540-74331-6_5

[19] Y. Lou and B. Wang, Local dynamics of a diffusive predator-prey model in spatially

heterogeneous environment, J. Fixed Point Theory Appl. 19 (2017), no. 1, 755–772.

https://doi.org/10.1007/s11784-016-0372-2

[20] I. Mazari, G. Nadin, and Y. Privat, Optimal location of resources maximizing the total

population size in logistic models, J. Math. Pures Appl. (9) 134 (2020), 1–35. https:

//doi.org/10.1016/j.matpur.2019.10.008

[21] I. Mazari and D. Ruiz-Balet, A fragmentation phenomenon for a nonenergetic optimal

control problem: optimisation of the total population size in logistic diffusive models,

SIAM J. Appl. Math. 81 (2021), no. 1, 153–172. https://doi.org/10.1137/20M132818X
[22] K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-

diffusion model with logistic growth, Calc. Var. Partial Differential Equations 57 (2018),

no. 3, Paper No. 80, 14 pp. https://doi.org/10.1007/s00526-018-1353-7
[23] W.-M. Ni, The mathematics of diffusion, CBMS-NSF Regional Conference Series in

Applied Mathematics, 82, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2011. https://doi.org/10.1137/1.9781611971972

[24] L. Roques and F. Hamel, Mathematical analysis of the optimal habitat configurations

for species persistence, Math. Biosci. 210 (2007), no. 1, 34–59. https://doi.org/10.
1016/j.mbs.2007.05.007

[25] J. G. Skellam, Random dispersal in theoretical populations, Biometrika 38 (1951), 196–

218. https://doi.org/10.1093/biomet/38.1-2.196
[26] B. Wang and Z. Zhang, Dynamics of a diffusive competition model in spatially het-

erogeneous environment, J. Math. Anal. Appl. 470 (2019), no. 1, 169–185. https:

//doi.org/10.1016/j.jmaa.2018.09.062

Junyoung Heo

Department of Mathematical Sciences

KAIST
Daejeon 34141, Korea

Yeonho Kim

Department of Mathematical Sciences
KAIST

Daejeon 34141, Korea
Email address: yho0922@kaist.ac.kr

https://dx.doi.org/10.3934/dcdsb.2020186
https://doi.org/10.5206/mase/10644
https://doi.org/10.5206/mase/10644
https://doi.org/10.1007/978-3-030-22583-4_8
https://doi.org/10.1007/978-3-030-22583-4_8
https://doi.org/10.1137/120869481
https://doi.org/10.1016/j.jde.2005.05.010
https://doi.org/10.1016/j.jde.2005.05.010
https://doi.org/10.1007/978-3-540-74331-6_5
https://doi.org/10.1007/978-3-540-74331-6_5
https://doi.org/10.1007/s11784-016-0372-2
https://doi.org/10.1016/j.matpur.2019.10.008
https://doi.org/10.1016/j.matpur.2019.10.008
https://doi.org/10.1137/20M132818X
https://doi.org/10.1007/s00526-018-1353-7
https://doi.org/10.1137/1.9781611971972
https://doi.org/10.1016/j.mbs.2007.05.007
https://doi.org/10.1016/j.mbs.2007.05.007
https://doi.org/10.1093/biomet/38.1-2.196
https://doi.org/10.1016/j.jmaa.2018.09.062
https://doi.org/10.1016/j.jmaa.2018.09.062

