References
- N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag. 19, 44-57 (2002). https://doi.org/10.1109/79.974727
- J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, "Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 354-379 (2012). https://doi.org/10.1109/JSTARS.2012.2194696
- M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Sparse unmixing of hyperspectral data," IEEE Trans. Geosci. Remote Sens. 49, 2014-2039 (2011). https://doi.org/10.1109/TGRS.2010.2098413
- M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Collaborative sparse regression for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens. 52, 341-354 (2014). https://doi.org/10.1109/TGRS.2013.2240001
- C. Y. Zheng, H. Li, Q. Wang, and C. L. P. Chen, "Reweighted sparse regression for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens. 54, 479-488 (2016). https://doi.org/10.1109/TGRS.2015.2459763
- R. Wang, H.-C. Li, W. Liao, and A. Pizurica, "Double reweighted sparse regression for hyperspectral unmixing," in Proc. IEEE International Geoscience and Remote Sensing Symposium - IGARSS (Beijing, China, Jul. 2016), pp. 6986-6989.
- Z. Shi, T. Shi, M. Zhou, and X. Xu, "Collaborative sparse hyperspectral unmixing using l0 norm," IEEE Trans. Geosci. Remote Sens. 56, 5495-5508 (2018). https://doi.org/10.1109/TGRS.2018.2818703
- M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens. 50, 4484-4502 (2012). https://doi.org/10.1109/TGRS.2012.2191590
- X. Li, J. Huang, L.-J. Deng, and T.-Z. Huang, "Bilateral filter based total variation regularization for sparse hyperspectral image unmixing," Inf. Sci. 504, 334-353 (2019). https://doi.org/10.1016/j.ins.2019.07.063
- J. Huang, T.-Z. Huang, X.-L. Zhao, and L.-J. Deng, "Joint-sparse-blocks regression for total variation regularized hyperspectral unmixing," IEEE Access 7, 138779-138791 (2019). https://doi.org/10.1109/ACCESS.2019.2943110
- S. Zhang, J. Li, H.-C. Li, C. Deng, and A. Plaza, "Spectral-spatial weighted sparse regression for hyperspectral image unmixing," IEEE Trans. Geosci. Remote Sens. 56, 3265-3276 (2018). https://doi.org/10.1109/TGRS.2018.2797200
- P. V. Giampouras, K. E. Themelis, A. A. Rontogiannis, and K. D. Koutroumbas, "Simultaneously sparse and low-rank abundance matrix estimation for hyperspectral image unmixing," IEEE Trans. Geosci. Remote Sens. 54, 4775-4789 (2016). https://doi.org/10.1109/TGRS.2016.2551327
- J. Huang, T. Z. Huang, L. J. Deng, and X. L. Zhao, "Joint-sparse-blocks and low-rank representation for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens. 57, 2419-2438 (2019). https://doi.org/10.1109/TGRS.2018.2873326
- H. Han, G. Wang, M. Wang, J. Miao, S. Guo, L. Chen, M. Zhang, and K. Guo, "Hyperspectral unmixing via nonconvex sparse and low-rank constraint," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 5704-5718 (2020). https://doi.org/10.1109/JSTARS.2020.3021520
- R. Ammanouil, J. A. Melhem, J. Farah, and P. Honeine, "Spectral partitioning and fusion techniques for hyperspectral data classification and unmixing," in Proc. 6th International Symposium on Communications, Control and Signal Processing - ISCCSP (Athens, Greece, May. 2014), pp. 550-553.
- L. Qi, J. Li, Y. Wang, and X. Gao, "Region-based multiview sparse hyperspectral unmixing incorporating spectral library," IEEE Geosci. Remote Sens. Lett. 16, 1140-1144 (2019). https://doi.org/10.1109/LGRS.2019.2891559
- L. Qi, J. Li, Y. Wang, Y. Huang, and X. Gao, "Spectral-spatial-weighted multiview collaborative sparse unmixing for hyperspectral images," IEEE Trans. Geosci. Remote Sens. 58, 8766-8779 (2020). https://doi.org/10.1109/TGRS.2020.2990476
- K. Wang, J. Zhang, and D. Li, "Adaptive affinity propagation clustering," Acta Autom. Sin. 33, 1242-1246 (2007).
- B. J. Frey and D. Dueck, "Clustering by passing messages between data points," Science 315, 972-976 (2007). https://doi.org/10.1126/science.1136800
- Y. Liu, J. Li, A. Plaza, J. Bioucas-Dias, A. Cuartero, and P. G. Rodriguez, "Spectral partitioning for hyperspectral remote sensing image classification," in Proc. IEEE Geoscience and Remote Sensing Symposium (QC, Canada, Jul. 2014), pp. 3434-3437.
- Y. Liu, J. Li, and A. Plaza, "Spectrometer-driven spectral partitioning for hyperspectral image classification," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 668-680 (2016). https://doi.org/10.1109/JSTARS.2015.2437614
- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Found. Trends Mach. Learn. 3, 1-122 (2010). https://doi.org/10.1561/2200000016
- Z. Shi, W. Tang, Z. Duren, and Z. Jiang, "Subspace matching pursuit for sparse unmixing of hyperspectral data," IEEE Trans. Geosci. Remote Sens. 52, 3256-3274 (2014). https://doi.org/10.1109/TGRS.2013.2272076
- S. Zhang, J. Li, Z. Wu, and A. Plaza, "Spatial discontinuityweighted sparse unmixing of hyperspectral images," IEEE Trans. Geosci. Remote Sens. 56, 5767-5779 (2018). https://doi.org/10.1109/TGRS.2018.2825457
- R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, and C. Richard, "A fast multiscale spatial regularization for sparse hyperspectral unmixing," IEEE Geosci. Remote Sens. Lett. 16, 598-602 (2019). https://doi.org/10.1109/LGRS.2018.2878394
- H. Li, R. Feng, L. Wang, Y. Zhong, and L. Zhang, "Superpixel-based reweighted low-rank and total variation sparse unmixing for hyperspectral remote sensing imagery," IEEE Trans. Geosci. Remote Sens. 59, 629-647 (2021). https://doi.org/10.1109/TGRS.2020.2994260
- S. Zhang, J. Li, K. Liu, C. Deng, L. Liu, and A. Plaza, "Hyperspectral unmixing based on local collaborative sparse regression," IEEE Geosci. Remote Sens. Lett. 13, 631-635 (2016). https://doi.org/10.1109/LGRS.2016.2527782
- U.S. Geological Survey, "Spectroscopy Lab," (U.S. Geological Survey, Published date: 1995), http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif (Accessed date: 5 November 2020).