과제정보
This work was supported by the research grant of the Kongju National University in 2020 (grant number 2020-0235-01).
참고문헌
- J. Chen and J. X. Zhao, "Upconversion nanomaterials: synthesis, mechanism, and application in sensing," Sensor 12, 2414-2435 (2012). https://doi.org/10.3390/s120302414
- B. Iyisan, R. Thiramanas, N. Nazarova, Y. Avlasevich, V. Mailander, S. Baluschev, and K. Landfester, "Temperature sensing in cells using polymeric upconversion nanoparticles," Biomacromolecules 21, 4469-4478 (2020). https://doi.org/10.1021/acs.biomac.0c00377
- W. Bi, Y. Wu, C. Chen, D. Zhou, Z. Song, D. Li, G. Chen, Q. Dai, Y. Zhu, and H. Song, "Dye sensitization and local surface plasmon resonance-enhanced upconversion luminescence for efficient perovskite solar cells," ACS Appl. Mater. Interfaces 12, 24737-24746 (2020). https://doi.org/10.1021/acsami.0c04258
- W. Yao, X. Chen, Q. Tian, C. Luo, X. Zhang, H. Peng, and W. Wu, "Directly printing of upconversion fluorescence-responsive elastomers for self-healable optical application," Chem. Eng. J. 384, 123375 (2020). https://doi.org/10.1016/j.cej.2019.123375
- K. Y. Jung, "Aerosol synthesis of TiO2:Er3+/Yb3+ submicronsized spherical particles and upconversion optimization for application as anti-counterfeiting materials," RSC Adv. 10, 16323-16329 (2020). https://doi.org/10.1039/D0RA01549K
- N. Q. Wang, X. Zhao, C. M. Li, E. Y. B. Pun, and H. Lin, "Upconversion and color tunability in Tm3+/Ho3+/Yb3+ doped low phonon energy bismuth tellurite glasses," J. Lumin. 130, 1044-1047 (2010). https://doi.org/10.1016/j.jlumin.2010.01.022
- H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G.-H. Pan, H. Wu, Y. Luo, H. Zhao, and J. Zhang, "Phonon energy dependent energy transfer upconversion for the red emission in the Er3+/Yb3+ system," J. Phys. Chem. C 122, 9611-9618 (2018). https://doi.org/10.1021/acs.jpcc.8b02446
- M. Azam and V. K. Rai, "Ho3+-Yb3+ codoped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion," Solid State Sci. 66, 7-15 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.02.001
- D. T. Klier and M. U. Kumke, "Analysing the effect of the crystal structure on upconversion luminescence in Yb3+, Er3+-co-doped NaYF4 nanomaterials," J. Mater. Chem. C 3, 11228-11238 (2015). https://doi.org/10.1039/C5TC02218E
- J. Wang, C. Cheng, and G. De, "Crystallinity effects and phase transition on upconversion emission of monodisperse NaGdF4:Yb, Er nanocrystals," Opt. Mater. 91, 419-424 (2019). https://doi.org/10.1016/j.optmat.2019.04.002
- L. Xing, W. Yang, D. Ma, and R. Wang, "Effect of crystallinity on the optical thermometry sensitivity of Tm3+/Yb3+ codoped LiNbO3 crystal," Sens. Actuators B Chem. 221, 458-462 (2015). https://doi.org/10.1016/j.snb.2015.06.132
- C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, "Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles," Nanoscale 5, 8084-8089 (2013). https://doi.org/10.1039/c3nr01916k
- K. Y. Jung, Y. C. Kang, and Y.-K. Park, "DMF effect on the morphology and the luminescence properties of Y2O3:Eu3+ red phosphor prepared by spray pyrolysis," J. Ind. Eng. Chem. 14, 224-229 (2008). https://doi.org/10.1016/j.jiec.2007.09.011
- K. Y. Jung, C. H. Lee, and Y. C. Kang, "Effect of surface area and crystallite size on luminescent intensity of Y2O3:Eu phosphor prepared by spray pyrolysis," Mater. Lett. 59, 2451-2456 (2005). https://doi.org/10.1016/j.matlet.2005.03.017
- H. Li, X. Pu, J. Yin, X. Wang, S. Yao, H. M. Noh, and J. H. Jeong, "Effect of crystallite size and crystallinity on photoluminescence properties and energy transfer of Y6MoO12:Eu," J. Am. Ceram. Soc. 99, 954-961 (2016). https://doi.org/10.1111/jace.14054
- W. Zhou, Z. Sun, J. Luo, X. Zhang, Q. Pang, and L. Zhou, "Great emission enhancement of high-efficient broadband K3YSi2O7:Eu red phosphor via enhancing crystallinity," J. Alloys Compd. 854, 157188 (2021). https://doi.org/10.1016/j.jallcom.2020.157188
- J. S. Cho, S. M. Lee, K. Y. Jung, and Y. C. Kang, "Large-scale production of fine-sized Zn2SiO4:Mn phosphor microspheres with a dense structure and good photoluminescence properties by a spray-drying process," RSC Adv. 4, 43606-43611 (2014). https://doi.org/10.1039/C4RA06903J
- J. S. Cho, K. Y. Jung, and Y. C. Kang, "Two-step spray-drying synthesis of dense and highly luminescent YAG:Ce3+ phosphor powders with spherical shape," RSC Adv. 5, 8345-8350 (2015). https://doi.org/10.1039/C4RA14302G
- J. Leng, Z. Wang, J. Wang, H.-H. Wu, G. Yan, X. Li, H. Guo, Y. Liu, Q. Zhang, and Z. Guo, "Advance in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion," Chem. Soc. Rev. 48, 3015-3072 (2019). https://doi.org/10.1039/C8CS00904J
- T. K. Vo and J. S. Kim, "Facile synthesis of mesoporous Cr2O3 microspheres by spray pyrolysis and their photocatalytic activity: effect of surfactant and pyrolysis temperature," Korean J. Chem. Eng. 37, 571-575 (2020). https://doi.org/10.1007/s11814-020-0475-8
- B. H. Min and K. Y. Jung, "Synthesis and luminescence characteristics of fine-sized Ba3xSi6O12N2:Eu green phosphor through spray pyrolysis using TEOS/Si3N4 mixed precursors," RSC Adv. 7, 44759-44765 (2017). https://doi.org/10.1039/C7RA08620B
- R. Raphael and E. I. Anila, "Investigation of photoluminescence emission from β-Ga2O3:Ce thin films deposited by spray pyrolysis technique," J. Alloys Compd. 872, 159590 (2021). https://doi.org/10.1016/j.jallcom.2021.159590
- A. A. G. Santiago, R. L. Tranquilin, M. S. Li, E. Longo, F. V. Motta, and M. R. D. Bomio, "Effect of temperature on ultrasonic spray pyrolysis method in zinc tungstate: the relationship between structural and optical properties," Mater. Chem. Phys. 258, 123991 (2021). https://doi.org/10.1016/j.matchemphys.2020.123991
- K. Y. Jung, J. C. Lee, D. S. Kim, B.-K. Choi, and W.-J. Kang, "Co-doping effect of monovalent alkali metals on optical properties of CeO2:Eu nanophosphor prepared by spray pyrolysis and application for preparing pearlescent pigments with red emission," J. Lumin. 192, 1313-1321 (2017). https://doi.org/10.1016/j.jlumin.2017.09.017
- Q. Wu, S. Lin, Z. Xie, L. Zhang, Y. Qian, Y. Wang, and H. Zhang, "Tunable upconversion luminescence of monodisperse Y2O3:Er3+/Yb3+/Tm3+ nanoparticles," Appl. Surf. Sci. 424, 164-169 (2017). https://doi.org/10.1016/j.apsusc.2017.02.136
- A. Pandey, V. K. Rai, R. Dey, and K. Kumar, "Enriched green upconversion emission in combustion synthesized Y2O3:Ho3+-Yb3+ phosphor," Mater. Chem. Phys. 139, 483-488 (2013). https://doi.org/10.1016/j.matchemphys.2013.01.043
- A. Pandey and V. K. Rai, "Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor," Dalton Trans. 42, 11005-11011 (2013). https://doi.org/10.1039/c3dt50592h
- M. Sun, J. Liu, and L. Nie, "Effect of Zn2+ and Li+ ions doped on microstructure and upconversion luminescence of Y2O3:Er3+-Yb3+ thin film," J. Alloys Compd. 816, 152575 (2020). https://doi.org/10.1016/j.jallcom.2019.152575