DOI QR코드

DOI QR Code

가변 F/수 삼중 배율 적외선 광학계 설계 연구

Design of Variable F-number and Triple Magnification Infrared Optical System

  • 정유미 (국방과학연구소 제3기술연구본부)
  • Jeong, Yumee (The 3rd Research and Development Institute, Agency for Defense Development)
  • 투고 : 2021.04.19
  • 심사 : 2021.05.26
  • 발행 : 2021.08.25

초록

본 논문에서는 적외선 탐색 및 추적 기능을 수행하는 광각 주사 광학계와 표적의 전자광학 추적 기능을 수행하는 협/중시계 광학계의 기능이 통합된 가변 F/수 삼중 배율 적외선 광학계를 설계하였다. 기존 광각 주사 광학계를 기반으로 무한 초점 광학계를 전단부에 설계하여 협/중시계 기능을 수행할 수 있는 광학계를 구현하였다. 시스템 성능 분석을 통해 성능 목표를 설정하고, 이를 바탕으로 광학계 설계를 위한 설계 사양을 도출하였으며, F/수가 다른 광학계를 추가하기 위해 조리개 크기를 줄여주는 웜 스톱을 적용하였고, 설계된 광학계에 적합하도록 세부 형상을 설계하였다. 설계 완료된 협/중시계 광학계 설계 결과를 분석하여 MTF (modulation transfer function)와 같은 목표 성능을 만족하는 것을 확인하였으며 운용성을 고려하여 비열화와 표적 거리에 따른 초점 렌즈군의 이동량을 분석하였고, 이를 통해 광역 탐색 및 추적 기능과 정밀 추적 및 3차원 정보 획득 기능이 통합된 단일 광학 시스템의 구현이 가능함을 확인하였다.

In this article, the design of a variable F-number and triple magnification infrared optical system is described. That is a two-in-one optical system that combines an infrared search and track (IRST) system and an electro-optical tracking system (EOTS), where an afocal optical system is added to the IRST optical system designed already. The performance target is determined by analyzing system performance, and then the specification in the optical system design is calculated. This optical system contains a warm stop making it possible that one optics has two different F/# by cutting the size of aperture, and that is designed to suit this optics. The system satisfies the requirement such as a modulation transfer function (MTF). For operational assessment, the movement of the focusing lens group is analyzed over the change of temperature and target distance. By using this optical system, it is possible to develop equipment having two functions, infrared searching and electro-optical tracking.

키워드

참고문헌

  1. H. S. Kim, C. W. Kim, and S. M. Hong, "Design of 4:1 IR zoom afocal telescope," J. Opt. Soc. Korea 9, 134-141 (1998).
  2. H. S. Kim, J. E. Yoo, and J. H. Lee, "Off-axis infrared optics with a concept of asymmetric field of view," Korea Patent KR101415146B1 (2014).
  3. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 4th ed. (McGraw-Hill, NY, USA, 2008), Vol. 4, pp. 183-393.
  4. K. J. Kasunic, Optical Systems Engineering (McGraw-Hill, NY, USA, 2011), Vol. 1, Chapter 6.2.1.
  5. G. C. Holst, Electro-optical Imaging System Performance, 5th ed. (SPIE press, WA, USA, 2003), Vol. 3, pp. 68-98.
  6. R. R. Shannon, The Art and Science of Optical Design (Cambridge University Press, Cambridge, UK, 1997), Vol. 1, Chapter 4.
  7. A. Deslis, "Optical design of a warm shield for the 8- to 12 micron wavelength region," Proc. SPIE 6288, 628803 (2006). https://doi.org/10.1117/12.682668
  8. Q. Tian, S. Chang, F. He, Z. Li, and Y. Qiao, "Spherical warm shield design for infrared imaging systems," Infrared Phys. Technol. 85, 66-73 (2017). https://doi.org/10.1016/j.infrared.2017.05.013
  9. Y. Liu, D. Cheng, Q. Wang, Q. Hou, L. Gu, H. Chen, T. Yang, and Y. T. Wang, "Optical distortion correction considering radial and tangential distortion rates defined by optical design," Results Opt. 3, 100072 (2021). https://doi.org/10.1016/j.rio.2021.100072
  10. M. N. Akram, "Design of a multiple-field-of-view optical system for 3- to 5-㎛ infrared focal-plane arrays," Opt. Eng. 42, 1704-1714 (2003). https://doi.org/10.1117/1.1572892
  11. G. B. Ahn, S. H. Kim, J. C. Jung, M. S. Jo, and C.-W. Kim, "Design of two zoom infrared camera using noise uniformity correction by shutter lens," J. Opt. Soc. Korea 18, 135-141 (2007).