DOI QR코드

DOI QR Code

적색 양자점 필름을 이용한 백색 발광 다이오드의 연색성 개선에 대한 광학 시뮬레이션 연구

Optical Simulation Study of the Improvement of Color-rendering Characteristics of White Light-emitting Diodes by Using Red Quantum-dot Films

  • 이기정 (한림대학교 나노융합스쿨, 나노융합기술연구소) ;
  • 홍승찬 (한림대학교 나노융합스쿨, 나노융합기술연구소) ;
  • 이정균 (한림대학교 나노융합스쿨, 나노융합기술연구소) ;
  • 고재현 (한림대학교 나노융합스쿨, 나노융합기술연구소)
  • Lee, Gi Jung (School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University) ;
  • Hong, Seung Chan (School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University) ;
  • Lee, Jung-Gyun (School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University) ;
  • Ko, Jae-Hyeon (School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University)
  • 투고 : 2021.06.01
  • 심사 : 2021.06.17
  • 발행 : 2021.08.25

초록

조명에 사용되는 일반적인 백색 발광 다이오드는 청색 발광 다이오드 위에 황색 형광체를 입힌 구조가 보편적이나 발광 스펙트럼상 짙은 적색 성분이 부족해서 조명의 연색성이 떨어지는 문제가 있다. 본 연구에서는 백색 발광 다이오드의 연색 특성을 개선하기 위해 적색 양자점 조명을 백색 조명의 확산판에 적용한 후 광학 시뮬레이션을 이용해 광구조를 최적화하고자 하였다. 양자점의 평균 자유 행정 및 확산판 내 TiO2 입자의 농도를 조절해 연색지수, 휘도 등 광특성을 조사했다. 대부분의 조건에서 연색지수는 90을 넘었고 이는 적색 양자점 필름의 적용이 일반적인 백색 발광 다이오드의 연색 특성을 개선하는 데 효과적인 방법임을 보여준다. 색좌표의 각도 의존성은 확산판과 조명 하단의 반사판 사이에 형성되는 광학적 공동 구조를 활용함으로써 제거할 수 있었는데 이는 공동 내 위치한 양자점 필름을 통한 빛의 다중 투과가 시야각에 따른 광경로의 차이를 줄였기 때문으로 해석된다.

Conventional white light-emitting diodes (LEDs) for lighting applications consist of blue LEDs and yellow phosphors, the spectrum of which lacks deep red. To improve the color-rendering characteristics of white LEDs, a red quantum-dot film was applied to the diffuser plate of LED lighting. The mean free paths of the quantum dots and the concentration of the TiO2 particles in the diffuser plate were adjusted to optimize the optical structure of the lighting. The color-rendering index (CRI) was greater than 90 for most conditions, which demonstrates that adoption of the red quantum-dot film is an effective way for improving the color-rendering properties of conventional white LEDs. The angular dispersion of color coordinates could be removed by utilizing the optical cavity formed between the diffuser plate and the reflector on the bottom of the lighting, where multiple passages of the light through the quantum-dot film reduced the differences in optical path length depending on the viewing angle.

키워드

과제정보

본 연구는 산업통상자원부와 한국산업기술진흥원의 스마트특성화기반 구축사업을 통한 지원을 받았습니다 (No. P0013743).

참고문헌

  1. P. Pust, P. J. Schmidt, and W. Schnick, "A revolution in lighting," Nat. Mater. 14, 454-458 (2015). https://doi.org/10.1038/nmat4270
  2. J. McKittrick and L. E. Shea-Rohwer, "Review: down conversion materials for solid-state lighting," J. Am. Ceram. Soc. 97, 1327-1352 (2014). https://doi.org/10.1111/jace.12943
  3. C. C. Lin, A. Meijerink, and R.-S. Liu, "Critical red components for next-generation white LEDs," J. Phys. Chem. Lett. 7, 495-503 (2016). https://doi.org/10.1021/acs.jpclett.5b02433
  4. W.-L. Wu, M.-H. Fang, W. Zhou, T. Lesniewski, S. Mahlik, M. Grinberg, M. G. Brik, H.-S. Sheu, B.-M. Cheng, J. Wang, and R.-S. Liu, "High color rendering index of Rb2GeF6:Mn4+ for light-emitting diodes," Chem. Mater. 29, 935-939 (2017). https://doi.org/10.1021/acs.chemmater.6b05244
  5. D. Luo, L. Wang, S.W. Or, H. Zhang, and R.-J. Xie, "Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors," RSC Adv. 7, 25964-25968 (2017). https://doi.org/10.1039/C7RA04614F
  6. M. Kim, W. B. Park, B. Bang, C. H. Kim, and K.-S. Sohn, "Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors," J. Mater. Chem. C 3, 5484-5489 (2015). https://doi.org/10.1039/C5TC00757G
  7. D. Y. Jeong, J. Ju, and D. H. Kim, "Optimized photoluminescence of K2SiF6:Mn4+ phosphors for LED solid-state lighting," New. Phys.: Sae Mulli 66, 311-316 (2016). https://doi.org/10.3938/NPSM.66.311
  8. H.-W. Choi, M. H. Choi, and J.-H. Ko, "Effect of temperature on the luminous properties of white-light-emitting diodes with red and green phosphors," New Phys.: Sae Mulli 63, 1149-1154 (2013). https://doi.org/10.3938/NPSM.63.1149
  9. S. Nizamoglu, T. Erdem, X. W. Sun, and H. V. Demir, "Warmwhite light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering," Opt. Lett. 35, 3372-3374 (2010). https://doi.org/10.1364/OL.35.003372
  10. K. A. Denault, A. A. Mikhailovsky, S. Brinkley, S. P. Den-Baars, and R. Seshadri, "Improving color rendition in solid state white lighting through the use of quantum dots," J. Mater. Chem. C 1, 1461-1466 (2013). https://doi.org/10.1039/c2tc00420h
  11. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, "Solution-processed, high-performance light-emitting diodes based on quantum dots," Nature 515, 96-99 (2014). https://doi.org/10.1038/nature13829
  12. D.-Y. Jo and H. Yang, "Spectral broadening of Cu-In-Zn-S quantum dot color converters for high color rendering white lighting device," J. Lumin. 166, 227-232 (2015). https://doi.org/10.1016/j.jlumin.2015.05.043
  13. S.-R. Chung, S.-S. Chen, K.-W. Wang, and C.-B. Siao, "Promotion of solid-state lighting for ZnCdSe quantum dot modified-YAG-based white light-emitting diodes," RSC Adv. 6, 51989-51996 (2016). https://doi.org/10.1039/C6RA10673K
  14. J.-H. Kim, D.-Y. Jo, K.-H. Lee, E.-P. Jang, C.-Y. Han, J.-H. Jo, and H. Yang, "White electroluminescent lighting device based on a single quantum dot emitter," Adv. Mater. 28, 5093-5098 (2016). https://doi.org/10.1002/adma.201600815
  15. H. C. Yoon, J. H. Oh, S. Lee, J. B. Park, and Y. R. Do, "Circadian-tunable perovskite quantum dot-based down-converted multi-package white LED with a color fidelity index over 90," Sci. Rep. 7, 2808 (2017). https://doi.org/10.1038/s41598-017-03063-7
  16. J.-H. Kim, B.-Y. Kim, E.-P. Jang, C.-Y. Han, J.-H. Jo, Y. R. Do, and H. Yang, "A near-ideal color rendering white solidstate lighting device copackaged with two color-separated Cu-X-S (X = Ga, In) quantum dot emitters," J. Mater. Chem. C 5, 6755-6761 (2017). https://doi.org/10.1039/C7TC01875D
  17. T. Meng, T. Yuan, X. Li, Y. Li, L. Fan, and S. Yang, "Ultrabroad-band, red sufficient, solid white emission from carbon quantum dot aggregation for single component warm white light emitting diodes with a 91 high color rendering index," Chem. Commun. 55, 6531-6534 (2019). https://doi.org/10.1039/C9CC01794A
  18. H. Zhang, Q. Su, and S. Chen, "Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission," Nat. Commun. 11, 2826 (2020). https://doi.org/10.1038/s41467-020-16659-x
  19. S. Rhee, K. Kim, J. Roh, and J. Kwak, "Recent progress in high-luminance quantum dot light-emitting diodes," Curr. Opt. Photon. 4, 161-173 (2020). https://doi.org/10.3807/COPP.2020.4.3.161
  20. A. Hong, J. Kim, and J. Kwak, "Sunlike white quantum dot light-emitting diodes with high color rendition quality," Adv. Opt. Mater. 8, 2001051 (2020). https://doi.org/10.1002/adom.202001051
  21. B. Li, M. Lu, J. Feng, J. Zhang, P. M. Smowton, J. Sohn, I.-K. Park, H. Zhong, and B. Hou, "Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting," J. Mater. Chem. C 8, 10676-10695 (2020). https://doi.org/10.1039/D0TC01349H
  22. Z. Luo, Y. Chen, and S.-T. Wu, "Wide color gamut LCD with a quantum dot backlight," Opt. Express 21, 26269-26284 (2013). https://doi.org/10.1364/OE.21.026269
  23. Y. Altintas, S. Genc, M. Y. Talpur, and E. Mutlugun, "CdSe/ZnS quantum dot films for high performance flexible lighting and display applications," Nanotechnology 27, 295604 (2016). https://doi.org/10.1088/0957-4484/27/29/295604
  24. Y.-H. Ko and J.-G. Park, "Novel quantum dot enhancement film with a super-wide color gamut for LCD displays," J. Korean Phys. Soc. 72, 45-51 (2018). https://doi.org/10.3938/jkps.72.45
  25. S. J. Kim, H. W. Jang, J.-G. Lee, J.-H. Ko, Y. W. Ko, and Y. Kim, "Study on improvements in the emission properties of quantum-dot film-based backlights," New. Phys.: Sae Mulli 69, 861-866 (2019). https://doi.org/10.3938/NPSM.69.861
  26. G. J. Lee, J.-G. Lee, Y. Kim, T. Park, Y. W. Ko, and J.-H. Ko, "The effect of the reflective property of a reflection film on the performance of backlight units with quantum-dot films for LCD applications," J. Inf. Disp. 22, 55-61 (2021). https://doi.org/10.1080/15980316.2020.1813822
  27. Z. Liu, C.-H. Lin, B.-R. Hyun, C.-W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C.-H. Ho, H.-C. Kuo, and J.-H. He, "Micro-lightemitting diodes with quantum dots in display technology," Light Sci. Appl. 9, 83 (2020). https://doi.org/10.1038/s41377-020-0268-1
  28. S. C. Allen and J. Steckl, "ELiXIR-Solid-state luminaire with enhanced light extraction by internal reflection," J. Disp. Technol. 3, 155-159 (2007). https://doi.org/10.1109/JDT.2007.895358
  29. C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, "Remote phosphor LED modules for general illumination: toward 200 lm/W general lighting LED light sources," Proc. SPIE 7058, 70580M (2008). https://doi.org/10.1117/12.799502
  30. M.-T. Lin, S.-P. Ying, M.-Y. Lin, K.-Y. Tai, S.-C. Tai, C.-H. Liu, J.-C. Chen, and C.-C. Sun, "Design of the ring remote phosphor structure for phosphor-converted white-light-emitting diodes," Jpn. J. Appl. Phys. 49, 072101 (2010). https://doi.org/10.1143/JJAP.49.072101
  31. H.-C. Kuo, C.-W. Hung, H.-C. Chen, K.-J. Chen, C.-H. Wang, C.-W. Sher, C.-C. Yeh, C.-C. Lin, C.-H. Chen, and Y.-J. Cheng, "Patterned structure of REMOTE PHOSPHOR for phosphor-converted white LEDs," Opt. Express 19, A930-A936 (2011). https://doi.org/10.1364/OE.19.00A930
  32. S.-C. Park, I. Rhee, J.-Y. Kim, H. J. Bark, and J. Jeong, "Luminous efficiency of open remote phosphor-converted white-light-emitting diodes," J. Korean Phys. Soc. 60, 1191-1195 (2012). https://doi.org/10.3938/jkps.60.1191
  33. M.-H. Kim, H. J. Lee, J.-H. Ko, D. H. Kim, H. S. Kim, and Y. D. Kim, "Improvement of electro-optic characteristics of white light-emitting diodes by using transparent ceramic-based remote phosphors," Sci. Adv. Mater. 8, 342-348 (2016). https://doi.org/10.1166/sam.2016.2491
  34. J.-Y. Lien, C-J. Chen, R.-K. Chiang, and S.-L. Wang, "High color-rendering warm-white lamps using quantum-dot color conversion films," Opt. Express 24, A1021-A1032 (2016). https://doi.org/10.1364/OE.24.0A1021
  35. S. C. Hong, J. Baek, H. Lee, G. J. Lee, J.-G. Lee, J.-H. Ko, Y. W. Ko, Y. Kim, and T. Park, "Study on the improvement of the color rendering index of white LEDs by using red quantum dots," New. Phys.: Sae Mulli 70, 698-704 (2020). https://doi.org/10.3938/NPSM.70.698
  36. M.-H. Shin, H.-J. Kim, and Y.-J. Kim, "Optical modeling based on mean free path calculations for quantum dot phosphors applied to optoelectronic devices," Opt. Express 25, A113-A123 (2017). https://doi.org/10.1364/OE.25.00A113