Acknowledgement
The authors are grateful to the Editor and three anonymous referees for their useful comments and suggestions.
References
- Anselin L (1988). Spatial Econometrics: Methods and Models, Kluwer Academic Publishers, Boston, USA.
- Anselin L, Le Gallo J, and Jayet H (2008). Spatial panel econometrics, The Econometrics of Panel Data, Fundamentals and Recent Developments in Theory and Practice(3rd ed), Springer, Berlin.
- Baltagi BH (2011). Spatial panels,The Handbook of Empirical Economics and Finance(pp.435-454), Chapman and Hall, New York.
- Berger JO (1980). Statistical Decision Theory: Foundations, Concepts and Methods, Springer, Berlin.
- Brown LD (1971). Admissible estimators, recurrent diffusions, and insoluble boundary value problems, Annals of Mathematical Statistics, 42, 85-90.
- Chaturvedi A, Tran VH, and Shukla G (1996). Improved estimation in the restricted regression model with non-spherical disturbances, Journal of Quantitative Economics, (12), 115-123.
- Chaturvedi A, Wan ATK, and Singh SP (2001). Stein-rule restricted regression estimator in a linear regression model with non-spherical disturbances, Communications in Statistics Theory & Methods, 30, 55-68. https://doi.org/10.1081/STA-100001558
- Chaturvedi A and Mishra S (2019). Generalized Bayes estimation of spatial autoregressive models, Statistics in Transition, 20.
- Elhorst JP (2003). Specification and estimation of spatial panel data models, International Regional Science Review, 26, 244-268. https://doi.org/10.1177/0160017603253791
- Elhorst JP (2010). Spatial panel data models, Handbook of Applied Spatial Analysis(377-407), Springer, Berlin.
- Elhorst JP (2014). Spatial Econometrics: from Cross-Sectional Data to Spatial Panels, Springer, Berlin.
- Glass AJ, Kenjegalieva K, and Sickles RC (2016). A spatial autoregressive stochastic frontier model for panel data with asymmetric efficiency spillovers, Journal of Econometrics, 190, 289-300. https://doi.org/10.1016/j.jeconom.2015.06.011
- Kubokawa T (1991). An approach to improving the James-Stein estimator, Journal of Multivariate Analysis, 36, 121-126. https://doi.org/10.1016/0047-259X(91)90096-K
- Kubokawa T (1994). A unified approach to improving equivariant estimators, Annals of Statistics, 22, 290-299. https://doi.org/10.1214/aos/1176325369
- Lee LF and Yu J(2015). Spatial panel data models, The Oxford Handbook of Panel Data(pp.363-401), Oxford University Press, New York.
- LeSage JP and Pace RK (2009). Introduction to Spatial Econometrics, Boca Raton, New York.
- Maruyama Y (1998). A unified and broadened class of admissible minimax estimators of a multivariate normal mean, Journal of Multivariate Analysis,64, 196-205. https://doi.org/10.1006/jmva.1997.1715
- Maruyama, Y (1999). Improving on the James-Stein estimator, Statistics & Decisions, 17, 137-140.
- Pal A, Dubey A and Chaturvedi A (2016). Shrinkage estimation in spatial autoregressive model, Journal of Multivariate Analysis,143, 362-373. https://doi.org/10.1016/j.jmva.2015.09.011
- Rao CR (1973) Linear Statistical Inference and Its Applications(2nd ed), Wiley, New York.
- Rubin H (1977). Robust Bayesian estimation. In Proceeding of the Statistical Decision Theory and Related Topics II, Indiana, USA.
- Srivastava VK and Srivastava AK (1983). Improved estimation of coefficients in regression models with incomplete prior information, Biometrical Journal, 25, 775-782. https://doi.org/10.1002/bimj.19830250807
- Srivastava VK and Srivastava AK (1984). Stein-rule estimators in restricted regression models, Estadistica, 36, 89-98.
- Srivastava AK and Chandra R (1991). Improved Estimation of Restricted Regression Model When Disturbances are not Necessarily Normal, Sankhya, B. 53, 119-133.
- Stein C (1973). Estimation of the mean of a multivariate normal distribution(pp 345-381), CA, USA.
- Tsukamoto T(2019). A spatial autoregressive stochastic frontier model for panel data incorporating a model of technical inefficiency, Japan & The World Economy, 50, 66-77. https://doi.org/10.1016/j.japwor.2018.11.003
- Toutenburg H and Shalabh (1996). Predictive performance of the methods of restricted and mixed regression estimators, Biometrical Journal, 38, 951-959. https://doi.org/10.1002/bimj.4710380807
- Toutenburg H and Shalabh (2000). Improved predictions in linear regression models with stochastic linear constraints, Biometrical Journal,42, 71-86. https://doi.org/10.1002/(SICI)1521-4036(200001)42:1<71::AID-BIMJ71>3.0.CO;2-H