DOI QR코드

DOI QR Code

Characteristics of Glycyrrhiza uralensis extract-loaded chitosan nanocapsules and their antioxidant activity

감초 추출물 함유 키토산 나노캡슐의 특성 및 항산화 활성

  • Kim, Min Jung (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Ji-Soo (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Hyeon Gyu (Department of Food and Nutrition, Hanyang University)
  • 김민정 (한양대학교 식품영양학과) ;
  • 이지수 (한양대학교 식품영양학과) ;
  • 이현규 (한양대학교 식품영양학과)
  • Received : 2020.12.30
  • Accepted : 2021.02.22
  • Published : 2021.08.31

Abstract

To improve the oxidative stability of Glycyrrhiza uralensis extract (GU), GU extraction conditions were optimized for maximal antioxidant activity, and GU-loaded nanocapsules were prepared by chitosan ionic gelation. The optimized ethanol concentration and extraction time were 83.0% and 32.6 min, respectively, using response surface methodology. The particle size of the GU-loaded nanocapsules ranged from 280 to 370 nm. A GU extract of 0.8 mg/mL and chitosan concentration of 2.0 mg/mL were selected as the optimal conditions for entrapment and loading efficiency. Both free GU and GU-loaded chitosan nanocapsules exhibited concentration-dependent antioxidant activity. However, the antioxidant protection factor of GU was effectively maintained when it was entrapped within the chitosan nanocapsules. In conclusion, chitosan nanoencapsulation is a potentially valuable technique for improving the oxidative stability of GU.

감초 추출물의 항산화 안정성을 증진시키기 위하여 키토산의 ionic gelation 특성을 이용한 감초 추출물을 함유한 키토산/TPP 나노캡슐을 제조하였다. 먼저 반응표면분석을 통해서 감초 추출물의 항산화활성을 최대로 할 수 있는 추출조건을 최적화하였다. 감초의 최적 추출조건은 83.01% 에탄올 농도에서 32.6분 동안 추출하는 것으로 결정되었으며, 최적 조건에서 제조된 감초 추출물의 총 플라보노이드 함량과 항산화 활성은 각각 20.47 ㎍ RE/mg과 22.32%/mg로 관측되어 예측값과 모두 표준편차 범위 내에 있음을 확인하였다. 다양한 감초 추출물과 키토산 농도에서 나노캡슐을 제조한 결과, 약 280-370 nm 범위의 캡슐크기를 나타냈으며 0.3 이하의 PDI를 나타내어 전반적으로 균일한 나노캡슐이 형성 되는 것으로 확인되었다. 포집효율 및 함유효율을 고려하여 감초 추출물과 키토산 농도를 각각 0.8과 2.0 mg/mL로 결정하였다. 지방과산화 억제능을 통한 APF 측정 결과, 나노캡슐화되지 않은 감초추출물은 반응 후에 급격히 상승되어 반응 4시간에 가장 높은 APF를 나타낸 후 급격히 감소된 반면, 감초 추출물 나노캡슐은 초반에는 약한 APF를 나타내다가 꾸준히 증가한 후 유지되어 반응 6시간 이후에는 모든 농도에서 유리 감초 추출물보다 유의적으로 높은 항산화 활성을 나타냈다. 따라서 감초 추출물은 키토산 나노캡슐화에 의해서 산화 안정성이 향상됨으로써 항산화 활성의 유지기간이 증진됨을 확인하였다. 본 연구를 통해서 키토산 나노캡슐화는 감초추출물의 항산화 안정성 증대에 효과적으로 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2021R1A2C2013460).

References

  1. Abeysinghe DC, Li X, Sun C, Zhang W, Zhou C, Chen K. Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem. Toxicol. 104: 1338-1344 (2007) https://doi.org/10.1016/j.foodchem.2007.01.047
  2. Akhmadjon S, Hong SH, Lee EH, Park HJ, Cho YJ. Biological activities of extracts from Tongue fern (Pyrrosia lingua). J. Appl. Biol. Chem. 63: 181-188 (2020) https://doi.org/10.3839/jabc.2020.025
  3. Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol. 109: 273-286 (2018) https://doi.org/10.1016/j.ijbiomac.2017.12.078
  4. Andarwulan N, Shetty K. Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of anise (Pimpinella anisum L.). J. Agr. Food Chem. 47: 1776-1780 (1999) https://doi.org/10.1021/jf981214r
  5. Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res. 22: 709-724 (2008) https://doi.org/10.1002/ptr.2362
  6. Badawi AA, El-Laithy HM, El Qidra RK, El Mofty H, El Dally M. Chitosan based nanocarriers for indomethacin ocular delivery. Arch. Pharm. Res. 31: 1040-1049 (2008) https://doi.org/10.1007/s12272-001-1266-6
  7. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25-30 (1995) https://doi.org/10.1016/S0023-6438(95)80008-5
  8. Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. J. Agr. Food Chem. 49: 2774-2779 (2001) https://doi.org/10.1021/jf001413m
  9. Calvo P, Remunan-Lopez C, Vila-jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63: 125-132 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
  10. Cha JY, Cho YS. Biofunctional activities of citrus flavonoids. J. Korean Soc. Agr. Chem. Biotechnol. 44: 122-128 (2001)
  11. Chun SS, Vattem DA, Lin YT, Shetty K. Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem. 40: 809-816 (2005) https://doi.org/10.1016/j.procbio.2004.02.018
  12. Chung JH, Lee JS, Lee HG. Resveratrol-loaded chitosan-γ-poly (glutamic acid) nanoparticles: Optimization, solubility, UV stability, and cellular antioxidant activity. Colloid. Surface B 186: 110702 (2020) https://doi.org/10.1016/j.colsurfb.2019.110702
  13. Du J, Zhang S, Sun R, Zhang LF, Xiong CD, Peng YX. Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. II. Release of albumin in vitro. J. Biomed. Mater. Res. -A. 72: 299-304 (2005)
  14. Dubal DB, Rau SW, Shughrue PJ, Zhu H, Yu J, Cashion AB, Suzukr S, Gerhold LM, Bottner MB, Dubal SB, Merchanthaler I, Kindy MS, Wise PM. Differential modulation of estrogen receptors (ERs) in ischermic brain injury: a role for ERα in estradiol-mediated protection against delayed cell death. Endocrinology 147: 3076-3084 (2006) https://doi.org/10.1210/en.2005-1177
  15. Dziezak JD. Microencapsulation and encapsulated ingredients. Food Technol. 42: 136 (1988)
  16. Fukai T, Satoh K, Nomura T, Sakagami H. Preliminary evaluation of antinephritis and radical scavenging activities of glavridin from Glycyrrhiza glabra. Fitoterapia 74: 624-629 (2003) https://doi.org/10.1016/S0367-326X(03)00164-3
  17. Gafner S, Bergeron C, Villinski JR, Godejohann M, Kessler P, Cardellina JH, Ferreira D, Feghali K, Grenier D. Isoflavonoids and coumarins from Glycyrrhiza uralensis: antibacterial activity against oral pathogens and conversion of isoflavans into isoflavan-quinones during purification. J. Nat. Prod. 74: 2514-2519 (2011) https://doi.org/10.1021/np2004775
  18. Haenen GRMM, Arts MJTJ, Bas, A, Coleman MD. Structure and activity in assessing antioxidant activity in vitro and in vivo A critical appraisal illustrated with the flavonoids. Environ. Toxicol. Phar. 21: 191-198 (2006) https://doi.org/10.1016/j.etap.2005.07.010
  19. Han HJ, Lee JS, Park SA, Ahn JB, Lee HG. Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloid. Surface B 130: 93-100 (2015) https://doi.org/10.1016/j.colsurfb.2015.03.050
  20. Hanato T, Aga Y, Shintani Y, Ito H, Okuda T, Yoshida T. Phenolic constituents of licorice part 9-Minor flavonoids from licorice. Phytochemistry 55: 959-963 (2000) https://doi.org/10.1016/S0031-9422(00)00244-2
  21. Hu B, Liu X, Zhang C, Zeng X. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J. Food Drug Anal. 25: 3-15 (2017) https://doi.org/10.1016/j.jfda.2016.11.004
  22. Jang KI, Lee HG. Stability of chitosan nanoparticles for L-ascorbic acid during heat treatment in aqueous solution. J. Agr. Food Chem. 56: 1936-1941 (2008) https://doi.org/10.1021/jf073385e
  23. Je HJ, Kim ES, Lee JS, Lee HG. Release properties and cellular uptake in Caco-2 cells of size-controlled chitosan nanoparticles. J. Agr. Food Chem. 65: 10899-10906 (2017) https://doi.org/10.1021/acs.jafc.7b03627
  24. Jeon JY, Ha SY, Kim YJ, Lee JE, Choi YH. Optimization of the hotwater extraction process of functional components from Glycyrrhiza uralensis using a response surface methodology. Food Eng. Progr. 12: 289-296 (2008)
  25. Karahan F, Avsar C, Ozyigit II, Berber I. Antimicrobial and antioxidant activities of medicinal plant Glycyrrhiza glabra var. glandulifera from different habitats. Biotechnol. Biotec. Eq. 30: 797-804 (2016) https://doi.org/10.1080/13102818.2016.1179590
  26. Kaur R, Kaur H, Dhindsa AS. Glycyrrhiza glabra: a phytopharmacological review. Int. J. Pharm. Sci. Res. 4: 2470 (2013)
  27. Kim DG, Jeong YI, Choi C, Roh SH, Kang SK, Jang MK, Nah JW. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Pharm. 319: 130-138 (2006a) https://doi.org/10.1016/j.ijpharm.2006.03.040
  28. Kim SJ, Kweon DH, Lee JH. Investigation of antioxidative activity and stability of ethanol extracts of licorice root (Glycyrrhiza glabra). Korean J. Food Sci. Technol. 38: 584-588 (2006b)
  29. Kuo YC. Loading efficiency of stavudine on polybutyl cyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles. Int. J. Pharm. 290: 161-172 (2005) https://doi.org/10.1016/j.ijpharm.2004.11.025
  30. Lee JS, Kim GH, Lee HG. Characteristics and antioxidant activity of Elsholtzia splendens extract-loaded nanoparticles. J. Agr. Food Chem. 58: 3316-3321 (2010) https://doi.org/10.1021/jf904091d
  31. Lee SR, Yon JM, Kim MR, Baek IJ, Kim YB, Ahn B, Lee BJ, Nam S-Y, Yun YW. Effects of licorice (Glycyrrhiza glabra) on the gene expression of glutathione peroxidase in the female reproductive system of rats. Lab. Anim. Res. 23: 77-82 (2007)
  32. Lu Z, Bei J, Wang S. A method for the preparation of polymeric nanocapsules without stabilizer. J. Control. Release 61: 107-112 (1999) https://doi.org/10.1016/S0168-3659(99)00112-1
  33. Mitscher LA, Drake S, Gollapudi SR, Harris JA, Shankel DM. Isolation and identification of higher plant agents active in antimutagenic assay systems: Glycyrrhiza glabra. Basic Life Sci. 39: 153-165 (1986)
  34. Opanasopit P, Apirakaramwong A, Ngawhirunpat T, Rojanarata T, Ruktanonchai U. Development and characterization of pectinate micro/nanoparticles for gene delivery. AAPS Pharm. Sci. Tech. 9: 67-74 (2008) https://doi.org/10.1208/s12249-007-9007-7
  35. Park CS, Kim DH, Kim ML. Biological activities of extracts from Cormi fructus, Astragalus membranaceus and Glycyrrhiza uralensis. Korean J. Herbol. 23: 93-101 (2008)
  36. Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother. Res. 32: 2323-2339 (2018) https://doi.org/10.1002/ptr.6178
  37. Pisoschi AM, Pop A, Cimpeanu C, Turcus V, Predoi G, Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity-A critical view. Eur. J. Med. Chem. 157: 1326-1345 (2018) https://doi.org/10.1016/j.ejmech.2018.08.076
  38. Sanguansri P, Augustin MA. Nanoscale materials development - a food industry perspective. Trends Food Sci. Tech. 17: 547-556 (2006) https://doi.org/10.1016/j.tifs.2006.04.010
  39. Woo KS, Hwang IG, Noh YH, Jeong HS. Antioxidant activity of heated licorice (Glycyrrhiza uralensis Fisch) extracts in Korea. J. Korean Soc. Food Sci. Nutr. 36: 689-695 (2007) https://doi.org/10.3746/jkfn.2007.36.6.689
  40. Woo KS, Jang KI, Kim KY, Lee HB, Jeong HS. Antioxidative activity of heat treated licorice (Glycyrrhiza uralensis Fisch) extracts. Korean J. Food Sci. Technol. 38: 355-360 (2006)
  41. Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int. J. Pharm. 295: 235-245 (2005) https://doi.org/10.1016/j.ijpharm.2005.01.042
  42. Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int. J. Pharm. 250: 215-226 (2003) https://doi.org/10.1016/S0378-5173(02)00548-3