DOI QR코드

DOI QR Code

Multifunctional evaluation of soaking-germinated Robusta coffee for flavor improvement

향미 개선을 위한 침지 발아 로부스타 커피의 다중 기능성 평가

  • Received : 2021.03.25
  • Accepted : 2021.06.09
  • Published : 2021.08.31

Abstract

This study was conducted to evaluate various beneficial functions of soaked and germinated Robusta coffee beans. Vietnam Robusta coffee beans were soaked in purified water or Salicornia extract for 12 h. The total polyphenol content of non-germinated coffee (NGC), Salicornia extract-germinated coffee (SGC), and water-germinated coffee (WGC) was found to be 16.71-20.17%. First, NGC, SGC, and WGC at concentrations of 25-100 ㎍/mL showed significant anti-oxidant effects on DPPH radical scavenging and xanthine oxidase activity. NGC, SGC, and WGC also inhibited tyrosinase activity and melanin formation in α-MSH-induced B16F10 cells. In addition, the anti-obesity property of germinated coffees was tested by the Oil Red O staining method. NGC, SGC, and WGC inhibited adipogenesis in 3T3-L1 cells without cytotoxicity. Taken together, germinated Robusta coffees with enhanced flavor showed beneficial multifunctional effects, such as anti-oxidant, anti-melanogenesis, and anti-adipogenesis effects.

본 연구는 커피의 향미개선에 효과가 있다고 알려진 침지 발아를 로부스타 커피에 적용하여 그 유용성을 검증하였다. 베트남 로부스타 커피 생두를 정제수와 함초 추출물에 침지 발아시켜 정수발아(WGC)와 함초발아(SGC) 원두를 제조하고 에스프레소 커피로 추출한 다음 그 기능성을 평가하였다. 400 ㎍/mL 농도에서 Folin-Ciocalteu법으로 분석한 총 폴리페놀 함량은 WGC (20.17%)>NGC (19.45%)>SGC (16.71%) 순으로 WGC의 총 폴리페놀 함량이 가장 높았다. 비발아 커피 뿐만 아니라 발아커피는 25~100 ug/ml 모든 농도에서 DPPH 제거능으로 평가된 실험에서 우수한 항산화 활성을 나타내었다. XOD 저해 효과 또한 400 ㎍/mL 농도에서 WGC 42%, NGC 39%, SGC 32%로 관찰되었다. 비발아 및 발아커피는 멜라닌 생합성의 주요 단계에 관여하는 효소인 tyrosinase 활성을 억제하였으며, α-MSH로 유도된 B16F10 세포에서 멜라닌 생성을 억제하였다. 이 결과는 대조약물 arbutin과 유사한 결과를 나타내었으며, NGC, SGC, WGC는 모두 미백효능이 있는 것으로 확인되었다. Oil red O 염색을 통해 NGC, SGC, WGC의 지방분화 억제효과를 측정한 결과 분화된 대조군 보다 로부스타 커피를 처리한 시료들의 지방구 양이 유의적으로 감소된 것을 확인할 수 있었다. 이상의 연구결과 로부스타 커피의 향미를 개선하기 위해 물 또는 함초 추출물을 사용하여 침지 발아된 커피는 항산화, 미백, 항비만 등 다양한 기능성을 나타내는 것을 시사한다.

Keywords

References

  1. Bae HC. Antioxidant and sensory properties of glasswort added coffee. The Journal of Korea Coffee Study. 6: 39-52 (2020)
  2. Bae HC, Park JU, Moon JH. Anti-inflammatory effects of a mixture of coffee and sword bean extracts. Korean J. Food Sci. Technol. 52: 237-243 (2020) https://doi.org/10.9721/KJFST.2020.52.3.237
  3. Barel M, Jacquet M. Coffee quality: its causes, appreciation and improvement. Plant Rech. Develop (France). 1: 5-13 (1994)
  4. Bredemeier M, Lopes L M, Eisenreich MA, Hickmann S, Bongiorno GK, d'Avila R, Campos GGD. Xanthine oxidase inhibitors for prevention of cardiovascular events: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 18: 1-11 (2018) https://doi.org/10.1186/s12872-017-0740-x
  5. Davis A P, Govaerts R, Bridson DM, Stoffelen P. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot. J. Linn. Soc, 152: 465-512 (2006) https://doi.org/10.1111/j.1095-8339.2006.00584.x
  6. Eira MT, Silva EA, De Castro RD, Dussert S, Walters C, Bewley JD, Hilhorst HW. Coffee seed physiology. Braz. J. Plant Physiol. 18: 149-163 (2006) https://doi.org/10.1590/S1677-04202006000100011
  7. Folin O, Denis W. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12: 239-243 (1912) https://doi.org/10.1016/S0021-9258(18)88697-5
  8. Fukushima Y, Takahashi Y, Hori Y, Kishimoto Y, Shiga K, Tanaka Y, Kondo K. Skin photoprotection and consumption of coffee and polyphenols in healthy middle-aged Japanese females. Int. J. Dermatol. 54: 410-418 (2015) https://doi.org/10.1111/ijd.12399
  9. Gawlik-Dziki U, Dziki D, Swieca M, Nowak R. Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids. Food Chem. 225: 138-145 (2017) https://doi.org/10.1016/j.foodchem.2017.01.016
  10. Harding PE, Bleeker P, Freyne DF. Land suitability evaluation for rainfed arabica coffee production: Western highlands province, Papua New Guinea. Coffee Res. Rep. 4: 39 (1987)
  11. Heo I, Lee S. The impact of climate on yield of coffee: The case of Costa Rica. J. Climate Change Res. 14: 145-157 (2019)
  12. Huh JY, Lee S, Ma EB, Eom HJ, Baek J. The effects of phenolic glycosides from Betula platyphylla var. japonica on adipocyte differentiation and mature adipocyte metabolism. J. Enzyme Inhib. Med. Chem. 33: 1167-1173 (2018) https://doi.org/10.1080/14756366.2018.1491846
  13. Illy E. The complexity of coffee. Sci. Am. 286: 86-91 (2002) https://doi.org/10.1038/scientificamerican0602-86
  14. Kalschne DL, Biasuz T, De Conti A J, Viegas MC, Corso MP, de Toledo Benassi M. Sensory characterization and acceptance of coffee brews of C. arabica and C. canephora blended with steamed defective coffee. Food Res. Int. 124: 234-238 (2019) https://doi.org/10.1016/j.foodres.2018.03.038
  15. Kiattisin K, Nantarat T, Leelapornpisid P. Evaluation of antioxidant and anti-tyrosinase activities as well as stability of green and roasted coffee bean extracts from Coffea arabica and Coffea canephora grown in Thailand. J. Pharmacognosy Phytother. 8: 182-192 (2016) https://doi.org/10.5897/JPP2016.0413
  16. Kim YK, Kim YI, Jhon DY. Changes of the chlorogenic acid, caffeine, gama-aminobutyric acid (GABA) and antioxdant activities during germination of coffee bean (Coffea arabica). Emir. J. Food Agric. 30: 675-680 (2018) https://doi.org/10.9755/ejfa.2018.v30.i8.1763
  17. Kweon MH, Hwang HJ, Sung HC. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J. Agric. Food Chem. 49(10): 4646-4655 (2001) https://doi.org/10.1021/jf010514x
  18. Leroy T, Ribeyre F, Bertrand B, Charmetant P, Dufour M, Montagnon C, Pot D. Genetics of coffee quality. Braz. J. Plant Physiol. 18: 229-242 (2006) https://doi.org/10.1590/S1677-04202006000100016
  19. Li HX, Park JU, Su XD, Kim KT, Kang JS, Kim YR, Yang SY. Identification of anti-melanogenesis constituents from Morus alba L. leaves. Molecules. 23: 2559 (2018) https://doi.org/10.3390/molecules23102559
  20. Lim YS, Shin YK, Kim DW. Effect of germination and temperature on the antioxidant activity of coffee. Korean J. Food Sci. Technol. 50: 198-202 (2018) https://doi.org/10.9721/KJFST.2018.50.2.198
  21. Liu D, Wang D, Yang W, Meng D. Potential anti-gout constituents as xanthine oxidase inhibitor from the fruits of Stauntonia brachyanthera. Bioorg. Med. Chem. 25: 3562-3566 (2017) https://doi.org/10.1016/j.bmc.2017.05.010
  22. Liu C, Yang N, Yang Q, Ayed C, Linforth R, Fisk ID. Enhancing Robusta coffee aroma by modifying flavour precursors in the green coffee bean. Food Chem. 281: 8-17 (2019) https://doi.org/10.1016/j.foodchem.2018.12.080
  23. Ma EB, Sahar NE, Jeong M, Huh JY. Irisin exerts inhibitory effect on adipogenesis through regulation of Wnt signaling. Front. Physiol. 10: 1085 (2019) https://doi.org/10.3389/fphys.2019.01085
  24. Moon SY, Kim MR. Aroma components and sensory characteristics of coffee germinated with wine. Korean J. Food Cook. Sci. 35: 346-356 (2019)
  25. Navarini L, Rivetti D. Water quality for Espresso coffee. Food Chem. 122: 424-428 (2010) https://doi.org/10.1016/j.foodchem.2009.04.019
  26. Park JU, Kang BY, Kim YR. Ethyl acetate fraction from Dendropanax morbifera leaves increases T cell growth by upregulating NFAT-mediated IL-2 secretion. Am. J. Chin. Med. 46: 453-467 (2018) https://doi.org/10.1142/S0192415X18500234
  27. Park JU, Kim SJ, Na CS, Choi CH, Seo CS, Son JK, Kang BY, Kim YR. Chondroprotective and anti-inflammatory effects of ChondroT, a new complex herbal medication. BMC Complementary Altern. Med. 16: 213 (2016) https://doi.org/10.1186/s12906-016-1211-0
  28. Park JU, Yang SY, Guo RH, Li HX, Kim YH, Kim YR. Anti-melanogenic effect of dendropanax morbiferus and its active components via protein kinase a/cyclic adenosine monophosphateresponsive binding protein-and p38 mitogen-activated protein kinase-mediated microphthalmia-associated transcription factor downregulation. Front. Pharmacol. 11: 507 (2020) https://doi.org/10.3389/fphar.2020.00507
  29. Patay EB, Sali N, Koszegi T, Csepregi R, Balazs V L. Nemeth T S, Papp N. Antioxidant potential, tannin and polyphenol contents of seed and pericarp of three Coffea species. Asian Pac. J. Trop. Med. 9: 366-371 (2016) https://doi.org/10.1016/j.apjtm.2016.03.014
  30. Sanz C, Maeztu L, Zapelena M, Bello J, Cid C. Profiles of volatile compounds and sensory analysis of three blends of coffee: Influence of different proportions of Arabica and Robusta and influence of roasting coffee with sugar. J. Sci. Food Agric. 82: 840-847 (2002) https://doi.org/10.1002/jsfa.1110
  31. Sacchetti G, Di Mattia C, Pittia P, Mastrocola D. Effect of roasting degree, equivalent thermal effect and coffee type on the radical scavenging activity of coffee brews and their phenolic fraction. J. Food Eng. 90(1): 74-80 (2009) https://doi.org/10.1016/j.jfoodeng.2008.06.005
  32. Vignoli JA, Bassoli DG, Benassi MDT. Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem. 124: 863-868 (2011) https://doi.org/10.1016/j.foodchem.2010.07.008
  33. Waters DM, Arendt EK, Moroni AV. Overview on the mechanisms of coffee germination and fermentation and their significance for coffee and coffee beverage quality. Crit. Rev. Food Sci. Nutr. 57: 259-274 (2017) https://doi.org/10.1080/10408398.2014.902804