DOI QR코드

DOI QR Code

Development of Cobalt coated MWCNTs/Polyurethane composite for microwave absorption

  • Singh, Navdeep (Department of Electronics and Communication Engineering, DAV University) ;
  • Aul, Gagan D. (Department of Electronics and Communication Engineering, DAV University)
  • 투고 : 2020.11.12
  • 심사 : 2021.05.18
  • 발행 : 2021.09.25

초록

This research work describes the design and method of development of microwave absorber and was conducted for analysis of reflection loss performance with the magnetic modifications of Multi-Walled Carbon Nanotubes (MWCNTs). Cobalt coated Multi-Walled Carbon Nanotubes composites were prepared by three step methods. Composites were developed with varying weight percentage of Cobalt (II) Chloride Hexahydrate and Multi-Walled Carbon Nanotubes. The morphology, elementary analysis and absorbing properties of Cobalt coated Multi-Walled Carbon Nanotubes composites were studied by FESEM, EDX and Vector Network Analyzer. The obtained Co coated MWCNTs/PU composite demonstrated the maximum reflection loss of -21.06 dB at 12.63 GHz and the maximum absorption bandwidth of 3.7 GHz, in the frequency range of 8-13 GHz with 3 mm thickness. These microwave absorption parameters can be credited to synergistic effect of improved matched impedance and greater microwave attenuation properties of the absorber. The combined usage of dielectric loss and magnetic loss absorber design shows great diversity and can be a promising candidate for designing high performance microwave absorbing materials.

키워드

참고문헌

  1. Ansari, A. and Akhtar, M.J. (2018), "High porous carbon black based flexible nanocomposite as efficient absorber for X-band applications", Mater. Res. Express, 5(10), 105017. https://doi.org/10.1088/2053-1591/aadb13
  2. Bhardwaj, P., Kaushik, S., Gairola, P. and Gairola, S.P. (2019), "Designing of nickel cobalt molybdate/multiwalled carbon nanotube composites for suppression of electromagnetic radiation", SN Appl. Sci., 1(1), 1-12. https://doi.org/10.1007/s42452-018-0115-7
  3. Deng, L. and Han, M. (2007), "Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability", Appl. Phys. Lett., 91(2), 2005-2008. https://doi.org/10.1063/1.2755875
  4. Deng, J., Zhang, X., Zhao, B., Bai, Z., Wen, S., Li, S., Li, S., Yang, J. and Zhang, R. (2018), "Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO", J. Mater. Chem. C, 6(26), 7128-7140. https://doi.org/10.1039/c8tc02520g
  5. Dong, C.K., Li, X., Zhang, Y., Qi, J.Y. and Yuan, Y.F. (2009), "Fe3O4 nanoparticles decorated multi-walled carbon nanotubes and their sorption properties", Chem. Res. Chinese Univ., 25(6), 936-940.
  6. Fan, X.J. and Xin, L.I. (2012), "Preparation and magnetic property of multiwalled carbon nanotubes decorated by Fe3O4 nanoparticles", New Carbon Mater., 27(2), 111-116. https://doi.org/10.1016/S1872-5805(12)60007-9
  7. Feng, W., Wang, Y., Chen, J., Li, B., Guo, L., Ouyang, J., Jia, D. and Zhou, Y. (2017), "Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: Tunable surface area and electromagnetic wave absorption properties", J. Mater. Chem. C, 6(1), 10-18. https://doi.org/10.1039/c7tc03784h
  8. Ganesh, M.G., Lavenya, K., Kirubashini, K.A., Ajeesh, G., Bhowmik, S., Epaarachchi, J.A. and Yuan, X. (2017), "Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding", Adv. Aircr. Spacecr. Sci., Int. J., 4(6) 729-744. https://doi.org/10.12989/aas.2017.4.6.729
  9. Gupta, T.K., Singh, B.P., Dhakate, S.R., Singh, V.N. and Mathur, R.B. (2013a), "Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites", J. Mater. Chem. A, 1(32), 9138-9149. https://doi.org/10.1039/c3ta11611e
  10. Gupta, T.K., Singh, B.P., Teotia, S., Katyal, V., Dhakate, S.R. and Mathur, R.B. (2013b), "Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials", J. Polym. Res., 20(6), 32-35. https://doi.org/10.1007/s10965-013-0169-6
  11. Hao, Z., Liu, Q.F. and Wang, J.B. (2010), "Coating carbon nanotubes with ferrites using an improved coprecipitation method", J. Compos. Mater., 44(3), 389-395. https://doi.org/10.1177/0021998309347576
  12. Iqbal, S. and Ahmad, S. (2020), "Conducting polymer composites: An efficient EMI shielding material, Materials for Potential EMI Shielding Applications", In: Materials for Potential EMI Shielding Applications, pp. 257-266. https://doi.org/10.1016/b978-0-12-817590-3.00016-6
  13. Kaur, H., Aul, G.D. and Chawla, V. (2015a), "Enhanced reflection loss performance of square based pyramidal microwave absorber using rice husk-coal", Progress Electromagnet. Res. M, 43, 165-173. https://doi.org/10.2528/PIERM15072603
  14. Kaur, R., Aul, G.D. and Chawla, V. (2015b), "Improved reflection loss performance of dried banana leaves pyramidal microwave absorbers by coal for application in anechoic chambers", Progress Electromagnet. Res. M,, 43, 157-164. https://doi.org/10.2528/PIERM15072602
  15. Kim, J.B., Lee, S.K. and Kim, C.G. (2008), "Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band", Compos. Sci. Technol., 68(14), 2909-2916. https://doi.org/10.1016/j.compscitech.2007.10.035
  16. Kumar, A., Pandel, U. and Banerjee, M.K. (2017), "Effect of high energy ball milling on the structure of iron - multiwall carbon nanotubes (MWCNT) composite", Adv. Mater. Res., Int. J., 6(3), 245-255. https://doi.org/10.12989/amr.2017.6.3.245
  17. Kumar, P., Narayan Maiti, U., Sikdar, A., Kumar Das, T., Kumar, A. and Sudarsan, V. (2019), "Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects", Polym. Rev., 59(4), 687-738. https://doi.org/10.1080/15583724.2019.1625058
  18. Lang, J., Yan, X. and Xue, Q. (2011), "Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors", J. Power Sources, 196(18), 7841-7846. https://doi.org/10.1016/j.jpowsour.2011.04.010
  19. Lin, H., Zhu, H., Guo, H. and Yu, L. (2008), "Microwave-absorbing properties of Co-filled carbon nanotubes", Mater. Res. Bull., 43(10), 2697-2702. https://doi.org/10.1016/j.materresbull.2007.10.016
  20. Liu, Q., Zhang, D. and Fan, T. (2008), "Electromagnetic wave absorption properties of porous carbon/Co nanocomposites", Appl. Phys. Lett., 93(1), 013110-3. https://doi.org/10.1063/1.2957035
  21. Liu, Y., Jiang, W., Li, S. and Li, F. (2009), "Electrostatic self-assembly of Fe 3 O 4 nanoparticles on carbon nanotubes", Appl. Surf. Sci., 255(18), 7999-8002. https://doi.org/10.1016/j.apsusc.2009.05.002
  22. Liu, T., Xie, X., Pang, Y. and Kobayashi, S. (2016), "Co/C nanoparticles with low graphitization degree: A high performance microwave-absorbing material", J. Mater. Chem. C, 4(8), 1727-1735. https://doi.org/10.1039/c5tc03874j
  23. Lv, H., Zhang, H., Ji, G. and Xu, Z.J. (2016a), "Interface strategy to achieve tunable high frequency attenuation", ACS Appl. Mater. Interf., 8(10), 6529-6538. https://doi.org/10.1021/acsami.5b12662
  24. Lv, H., Zhang, H., Zhao, J., Ji, G. and Du, Y. (2016b), "Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures", Nano Res., 9(6), 1813-1822. https://doi.org/10.1007/s12274-016-1074-1
  25. Lv, H., Guo, Y., Wu, G., Ji, G., Zhao, Y. and Xu, Z.J. (2017a), "Interface polarization strategy to solve electromagnetic wave interference issue", ACS Appl. Mater. Interf., 9(6), 5660-5668. https://doi.org/10.1021/acsami.6b16223
  26. Lv, H., Guo, Y., Yang, Z., Cheng, Y., Wang, L.P., Zhang, B., Zhao, Y., Xu, Z.J. and Ji, G. (2017b), "A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials", J. Mater. Chem. C, 5(3), 491-512. https://doi.org/10.1039/c6tc03026b
  27. Mathur, R.B., Chatterjee, S. and Singh, B.P. (2008), "Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties", Compos. Sci. Technol., 68(7-8), 1608-1615. https://doi.org/10.1016/j.compscitech.2008.02.020
  28. Mathur, R.B., Pande, S. and Singh, B.P. (2014), "Properties of PMMA / Carbon", Polym. Nanotube Compos., 177.
  29. Mathur, R.B., Pande, S., Singh, B.P. and Dhami, T.L. (2016), "Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites", Polym. Compos., 37(1), 915-924. https://doi.org/10.1002/pc
  30. Panwar, R. and Lee, J.R. (2019), "Recent advances in thin and broadband layered microwave absorbing and shielding structures for commercial and defense applications", Funct. Compos. Struct., 1(3), 032001. https://doi.org/10.1088/2631-6331/ab2863
  31. Peymanfar, R., Javanshir, S., Naimi-Jamal, M.R., Cheldavi, A. and Esmkhani, M. (2019), "Preparation and characterization of MWCNT/Zn0.25Co0.75Fe2O4 nanocomposite and investigation of its microwave absorption properties at x-band frequency using silicone rubber polymeric matrix", J. Electron. Mater., 48(5), 3086-3095. https://doi.org/10.1007/s11664-019-07065-1
  32. Qiao, J., Zhang, X., Xu, D., Kong, L., Lv, L., Yang, F., Wang, F., Liu, W. and Liu, J. (2020), "Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption", Chem. Eng. J., 380, 122591. https://doi.org/10.1016/j.cej.2019
  33. Qiao, J., Zhang, X., Liu, C., Lyu, L., Yang, Y., Wang, Z., Wu, L., Liu, W., Wang, F. and Liu, J. (2021), "Non-Magnetic Bimetallic MOF-Derived Porous Carbon-Wrapped TiO2/ZrTiO4 Composites for Efficient Electromagnetic Wave Absorption", Nano-Micro Lett., 13(1), 1-16. https://doi.org/10.1007/s40820-021-00606-6
  34. Qing, Y., Zhou, W., Luo, F. and Zhu, D. (2009), "Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings", J. Magnet. Magnet. Mater., 321(1), 25-28. https://doi.org/10.1016/j.jmmm.2008.07.011
  35. Raveendran, A., Sebastian, M.T. and Raman, S. (2019), "Applications of microwave materials: a review", J. Electron. Mater., 48(5), 2601-2634. https://doi.org/10.1007/s11664-019-07049-1
  36. Rosca, I.D., Watari, F., Uo, M. and Akasaka, T. (2005), "Oxidation of multiwalled carbon nanotubes by nitric acid", Carbon, 43(15), 3124-3131. https://doi.org/10.1016/j.carbon.2005.06.019
  37. Saini, P. and Choudhary, V. (2013), "Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites", J. Nanopart. Res., 15(1), 1-7. https://doi.org/10.1007/s11051-012-1415-2
  38. Saini, P., Choudhary, V., Singh, B.P., Mathur, R.B. and Dhawan, S.K. (2011), "Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4-18.0 GHz range", Synthetic Metals, 161(15-16), 1522-1526. https://doi.org/10.1016/j.synthmet.2011.04.033
  39. Saini, P., Choudhary, V., Vijayan, N. and Kotnala, R.K. (2012), "Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles", J. Phys. Chem. C, 116(24), 13403-13412. https://doi.org/10.1021/jp302131w
  40. Singh, B.P., Choudhary, V., Saini, P., Pande, S., Singh, V.N. and Mathur, R.B. (2013), "Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites", J. Nanopart. Res., 15(4), 1-12. https://doi.org/10.1007/s11051-013-1554-0
  41. Singh, B.P., Bharadwaj, P., Choudhary, V. and Mathur, R.B. (2014), "Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites", Appl. Nanosci., 4(4), 421-428. https://doi.org/10.1007/s13204-013-0214-0
  42. Setua, D.K., Mordina, B., Srivastava, A.K., Roy, D. and Prasad, N.E. (2020), "Carbon nanofibers-reinforced polymer nanocomposites as efficient microwave absorber", In: Fiber-Reinforced Nanocomposites: Fundamentals and Applications, pp. 395-430. https://doi.org/10.1016/b978-0-12-819904-6.00018-9
  43. Shu, R., Zhang, G., Wang, X., Gao, X., Wang, M., Gan, Y., Shi, J. and He, J. (2018), "Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers", Chem. Eng. J., 337, 242-255. https://doi.org/10.1016/j.cej.2017.12.106
  44. Shu, R., Wu, Y., Li, Z., Zhang, J., Wan, Z., Liu, Y. and Zheng, M. (2019a), "Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band", Compos. Sci. Technol., 184, 107839. https://doi.org/10.1016/j.compscitech.2019.107839
  45. Shu, R., Li, W., Wu, Y., Zhang, J. and Zhang, G. (2019b), "Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band", Chem. Eng. J., 362, 513-524. https://doi.org/10.1016/j.cej.2019.01.090
  46. Shu, R., Li, W., Wu, Y., Zhang, J., Zhang, G. and Zheng, M. (2019c), "Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties", Compos. Part B: Eng., 178, 107518. https://doi.org/10.1016/j.compositesb.2019.107518
  47. Shu, R., Wu, Y., Zhang, J., Wan, Z. and Li, X. (2020a), "Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocomposites for electromagnetic wave absorption", Compos. Part B: Eng., 193, 108027. https://doi.org/10.1016/j.compositesb.2020.108027
  48. Shu, R., Wu, Y., Li, W., Zhang, J., Liu, Y., Shi, J. and Zheng, M. (2020b), "Fabrication of ferroferric oxide-carbon/reduced graphene oxide nanocomposites derived from Fe-based metal-organic frameworks for microwave absorption", Compos. Sci. Technol., 196, 108240. https://doi.org/10.1016/j.compscitech.2020.108240
  49. Shu, R., Zhang, J., Guo, C., Wu, Y., Wan, Z., Shi, J., Liu, Y. and Zheng, M. (2020c), "Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band", Chem. Eng. J., 384, 123266. https://doi.org/10.1016/j.cej.2019.123266
  50. Singh, N. and Aul, G.D. (2020), "Fabrication of cobalt filled multi-walled carbon nanotubes/polyurethane composite for microwave absorption", SN Appl. Sci., 2(12), 1-13. https://doi.org/10.1007/s42452-020-03755-2
  51. Singh, B.P., Saini, P., Gupta, T., Garg, P., Kumar, G., Pande, I., Pande, S., Seth, R.K., Dhawan, S.K. and Mathur, R.B. (2011), "Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation", J. Nanopart. Res., 13(12), 7065-7074. https://doi.org/10.1007/s11051-011-0619-1
  52. Singh, B.P., Choudhary, V., Saini, P. and Mathur, R.B. (2012), "Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding", AIP Advances, 2(2), 022151. https://doi.org/10.1063/1.4730043
  53. Singh, B.P., Saini, K., Choudhary, V., Teotia, S., Pande, S., Saini, P. and Mathur, R.B. (2014), "Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites", J. Nanopart. Res., 16(1), 2161. https://doi.org/10.1007/s11051-013-2161-9
  54. Song, S., Yang, H., Rao, R., Liu, H. and Zhang, A. (2010), "High catalytic activity and selectivity for hydroxylation of benzene to phenol over multi-walled carbon nanotubes supported Fe3O4 catalyst", Appl. Catalysis A: General, 375(2), 265-271. https://doi.org/10.1016/j.apcata.2010.01.008
  55. Su, X., Wang, J., Zhang, X., Huo, S., Dai, W. and Zhang, B. (2020), "Synergistic effect of polyhedral iron-cobalt alloys and graphite nanosheets with excellent microwave absorption performance", J. Alloys Compounds, 829, 154426. https://doi.org/10.1016/j.jallcom.2020.154426
  56. Sun, J., Wang, L., Yang, Q., Shen, Y. and Zhang, X. (2020), "Preparation of copper-cobalt-nickel ferrite/graphene oxide/polyaniline composite and its applications in microwave absorption coating", Progress Organic Coat., 141, 105552. https://doi.org/10.1016/j.porgcoat.2020.105552
  57. Tao, Y., Yin, P., Zhang, L., Feng, X., Wang, J., Zhang, Y., Wu, W., Liu, Y., Li, S. and Qiu, Z. (2019), "One-Pot Hydrothermal Synthesis of Co3O4/MWCNTs/Graphene Composites with Enhanced Microwave Absorption in Low Frequency Band", ChemNanoMat, 5(6), 847-857. https://doi.org/10.1002/cnma.201900173
  58. Tianjiao, B., Yan, Z., Xiaofeng, S. and Yuexin, D. (2011), "A study of the electromagnetic properties of Cobalt-multiwalled carbon nanotubes (Co-MWCNTs) composites", Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 176(12), 906-912. https://doi.org/10.1016/j.mseb.2011.05.016
  59. Verma, M., Chauhan, S.S., Dhawan, S.K. and Choudhary, V. (2017), "Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations", Compos. Part B: Eng., 120, 118-127. https://doi.org/10.1016/j.compositesb.2017.03.068
  60. Vinoy, K.J. and Jha, R.M. (1996), Radar Absorbing Material: From Theory to Design and Characterization, Springer, USA.
  61. Wang, X., Zhao, Z., Qu, J., Wang, Z. and Qiu, J. (2010), "Fabrication and characterization of magnetic Fe3O4-CNT composites", J. Phys. Chem. Solids, 71(4), 673-676. https://doi.org/10.1016/j.jpcs.2009.12.063
  62. Wu, N., Lv, H., Liu, J., Liu, Y., Wang, S. and Liu, W. (2016), "Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses", Phys. Chem. Chem. Phys., 18(46), 31542-31550. https://doi.org/10.1039/c6cp06066h
  63. Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163
  64. Xu, X., Ran, F., Fan, Z., Lai, H., Cheng, Z., Lv, T., Shao, L. and Liu, Y. (2019), "Cactus-inspired bimetallic metal-organic framework-derived 1D-2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance", ACS Appl. Mater. Interf., 11(14), 13564-13573. https://doi.org/10.1021/acsami.9b00356
  65. Yan, J., Huang, Y., Zhang, Z. and Liu, X. (2019), "Novel 3D microsheets contain cobalt particles and numerous interlaced carbon nanotubes for high-performance electromagnetic wave absorption", J. Alloys Compounds, 785, 1206-1214. https://doi.org/10.1016/j.jallcom.2019.01.275
  66. Yin, Y., Liu, X., Wei, X., Li, Y., Nie, X., Yu, R. and Shui, J. (2017), "Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber", ACS Appl. Mater. Interf., 9(36), 30850-30861. https://doi.org/10.1021/acsami.7b10067
  67. Yusuf, J.Y., Soleimani, H., Sanusi, Y.K., Adebayo, L.L., Sikiru, S. and Wahaab, F.A. (2020), "Recent advances and prospect of cobalt based microwave absorbing materials", Ceramics Int., 46(17), 26466-26485. https://doi.org/10.1016/j.ceramint.2020.07.244
  68. Zhang, D., Xu, F., Lin, J., Yang, Z. and Zhang, M. (2014), "Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2-18-GHz frequency range", Carbon, 80(1), 103-111. https://doi.org/10.1016/j.carbon.2014.08.044
  69. Zhao, D.L., Zhang, J.M., Li, X. and Shen, Z.M. (2010), "Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes", J. Alloys Compounds, 505(2), 712-716. https://doi.org/10.1016/j.jallcom.2010.06.122
  70. Zheng, X., Li, Y. and Fun, X. (2020), "Design of Efficient Microwave Absorbers Based on Cobalt-Based MOF/SrFe10CoTiO19/Carbon Nanofibers Nanocomposite", J. Superconduct. Novel Magnet., 33(9). https://doi.org/10.1007/s10948-020-05499-x
  71. Zhu, X., Wang, X., Liu, K., Meng, M. and Akhtar, M.N. (2020), "Microwave absorption characteristics of carbon foam decorated with BaFe12O19 and Ni0.5Co0.5Fe2O4 magnetic composite in X-band frequency", J. Magnet. Magnet. Mater., 513, 167258. https://doi.org/10.1016/j.jmmm.2020.167258