References
- Ansari, A. and Akhtar, M.J. (2018), "High porous carbon black based flexible nanocomposite as efficient absorber for X-band applications", Mater. Res. Express, 5(10), 105017. https://doi.org/10.1088/2053-1591/aadb13
- Bhardwaj, P., Kaushik, S., Gairola, P. and Gairola, S.P. (2019), "Designing of nickel cobalt molybdate/multiwalled carbon nanotube composites for suppression of electromagnetic radiation", SN Appl. Sci., 1(1), 1-12. https://doi.org/10.1007/s42452-018-0115-7
- Deng, L. and Han, M. (2007), "Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability", Appl. Phys. Lett., 91(2), 2005-2008. https://doi.org/10.1063/1.2755875
- Deng, J., Zhang, X., Zhao, B., Bai, Z., Wen, S., Li, S., Li, S., Yang, J. and Zhang, R. (2018), "Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO", J. Mater. Chem. C, 6(26), 7128-7140. https://doi.org/10.1039/c8tc02520g
- Dong, C.K., Li, X., Zhang, Y., Qi, J.Y. and Yuan, Y.F. (2009), "Fe3O4 nanoparticles decorated multi-walled carbon nanotubes and their sorption properties", Chem. Res. Chinese Univ., 25(6), 936-940.
- Fan, X.J. and Xin, L.I. (2012), "Preparation and magnetic property of multiwalled carbon nanotubes decorated by Fe3O4 nanoparticles", New Carbon Mater., 27(2), 111-116. https://doi.org/10.1016/S1872-5805(12)60007-9
- Feng, W., Wang, Y., Chen, J., Li, B., Guo, L., Ouyang, J., Jia, D. and Zhou, Y. (2017), "Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: Tunable surface area and electromagnetic wave absorption properties", J. Mater. Chem. C, 6(1), 10-18. https://doi.org/10.1039/c7tc03784h
- Ganesh, M.G., Lavenya, K., Kirubashini, K.A., Ajeesh, G., Bhowmik, S., Epaarachchi, J.A. and Yuan, X. (2017), "Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding", Adv. Aircr. Spacecr. Sci., Int. J., 4(6) 729-744. https://doi.org/10.12989/aas.2017.4.6.729
- Gupta, T.K., Singh, B.P., Dhakate, S.R., Singh, V.N. and Mathur, R.B. (2013a), "Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites", J. Mater. Chem. A, 1(32), 9138-9149. https://doi.org/10.1039/c3ta11611e
- Gupta, T.K., Singh, B.P., Teotia, S., Katyal, V., Dhakate, S.R. and Mathur, R.B. (2013b), "Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials", J. Polym. Res., 20(6), 32-35. https://doi.org/10.1007/s10965-013-0169-6
- Hao, Z., Liu, Q.F. and Wang, J.B. (2010), "Coating carbon nanotubes with ferrites using an improved coprecipitation method", J. Compos. Mater., 44(3), 389-395. https://doi.org/10.1177/0021998309347576
- Iqbal, S. and Ahmad, S. (2020), "Conducting polymer composites: An efficient EMI shielding material, Materials for Potential EMI Shielding Applications", In: Materials for Potential EMI Shielding Applications, pp. 257-266. https://doi.org/10.1016/b978-0-12-817590-3.00016-6
- Kaur, H., Aul, G.D. and Chawla, V. (2015a), "Enhanced reflection loss performance of square based pyramidal microwave absorber using rice husk-coal", Progress Electromagnet. Res. M, 43, 165-173. https://doi.org/10.2528/PIERM15072603
- Kaur, R., Aul, G.D. and Chawla, V. (2015b), "Improved reflection loss performance of dried banana leaves pyramidal microwave absorbers by coal for application in anechoic chambers", Progress Electromagnet. Res. M,, 43, 157-164. https://doi.org/10.2528/PIERM15072602
- Kim, J.B., Lee, S.K. and Kim, C.G. (2008), "Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band", Compos. Sci. Technol., 68(14), 2909-2916. https://doi.org/10.1016/j.compscitech.2007.10.035
- Kumar, A., Pandel, U. and Banerjee, M.K. (2017), "Effect of high energy ball milling on the structure of iron - multiwall carbon nanotubes (MWCNT) composite", Adv. Mater. Res., Int. J., 6(3), 245-255. https://doi.org/10.12989/amr.2017.6.3.245
- Kumar, P., Narayan Maiti, U., Sikdar, A., Kumar Das, T., Kumar, A. and Sudarsan, V. (2019), "Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects", Polym. Rev., 59(4), 687-738. https://doi.org/10.1080/15583724.2019.1625058
- Lang, J., Yan, X. and Xue, Q. (2011), "Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors", J. Power Sources, 196(18), 7841-7846. https://doi.org/10.1016/j.jpowsour.2011.04.010
- Lin, H., Zhu, H., Guo, H. and Yu, L. (2008), "Microwave-absorbing properties of Co-filled carbon nanotubes", Mater. Res. Bull., 43(10), 2697-2702. https://doi.org/10.1016/j.materresbull.2007.10.016
- Liu, Q., Zhang, D. and Fan, T. (2008), "Electromagnetic wave absorption properties of porous carbon/Co nanocomposites", Appl. Phys. Lett., 93(1), 013110-3. https://doi.org/10.1063/1.2957035
- Liu, Y., Jiang, W., Li, S. and Li, F. (2009), "Electrostatic self-assembly of Fe 3 O 4 nanoparticles on carbon nanotubes", Appl. Surf. Sci., 255(18), 7999-8002. https://doi.org/10.1016/j.apsusc.2009.05.002
- Liu, T., Xie, X., Pang, Y. and Kobayashi, S. (2016), "Co/C nanoparticles with low graphitization degree: A high performance microwave-absorbing material", J. Mater. Chem. C, 4(8), 1727-1735. https://doi.org/10.1039/c5tc03874j
- Lv, H., Zhang, H., Ji, G. and Xu, Z.J. (2016a), "Interface strategy to achieve tunable high frequency attenuation", ACS Appl. Mater. Interf., 8(10), 6529-6538. https://doi.org/10.1021/acsami.5b12662
- Lv, H., Zhang, H., Zhao, J., Ji, G. and Du, Y. (2016b), "Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures", Nano Res., 9(6), 1813-1822. https://doi.org/10.1007/s12274-016-1074-1
- Lv, H., Guo, Y., Wu, G., Ji, G., Zhao, Y. and Xu, Z.J. (2017a), "Interface polarization strategy to solve electromagnetic wave interference issue", ACS Appl. Mater. Interf., 9(6), 5660-5668. https://doi.org/10.1021/acsami.6b16223
- Lv, H., Guo, Y., Yang, Z., Cheng, Y., Wang, L.P., Zhang, B., Zhao, Y., Xu, Z.J. and Ji, G. (2017b), "A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials", J. Mater. Chem. C, 5(3), 491-512. https://doi.org/10.1039/c6tc03026b
- Mathur, R.B., Chatterjee, S. and Singh, B.P. (2008), "Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties", Compos. Sci. Technol., 68(7-8), 1608-1615. https://doi.org/10.1016/j.compscitech.2008.02.020
- Mathur, R.B., Pande, S. and Singh, B.P. (2014), "Properties of PMMA / Carbon", Polym. Nanotube Compos., 177.
- Mathur, R.B., Pande, S., Singh, B.P. and Dhami, T.L. (2016), "Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites", Polym. Compos., 37(1), 915-924. https://doi.org/10.1002/pc
- Panwar, R. and Lee, J.R. (2019), "Recent advances in thin and broadband layered microwave absorbing and shielding structures for commercial and defense applications", Funct. Compos. Struct., 1(3), 032001. https://doi.org/10.1088/2631-6331/ab2863
- Peymanfar, R., Javanshir, S., Naimi-Jamal, M.R., Cheldavi, A. and Esmkhani, M. (2019), "Preparation and characterization of MWCNT/Zn0.25Co0.75Fe2O4 nanocomposite and investigation of its microwave absorption properties at x-band frequency using silicone rubber polymeric matrix", J. Electron. Mater., 48(5), 3086-3095. https://doi.org/10.1007/s11664-019-07065-1
- Qiao, J., Zhang, X., Xu, D., Kong, L., Lv, L., Yang, F., Wang, F., Liu, W. and Liu, J. (2020), "Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption", Chem. Eng. J., 380, 122591. https://doi.org/10.1016/j.cej.2019
- Qiao, J., Zhang, X., Liu, C., Lyu, L., Yang, Y., Wang, Z., Wu, L., Liu, W., Wang, F. and Liu, J. (2021), "Non-Magnetic Bimetallic MOF-Derived Porous Carbon-Wrapped TiO2/ZrTiO4 Composites for Efficient Electromagnetic Wave Absorption", Nano-Micro Lett., 13(1), 1-16. https://doi.org/10.1007/s40820-021-00606-6
- Qing, Y., Zhou, W., Luo, F. and Zhu, D. (2009), "Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings", J. Magnet. Magnet. Mater., 321(1), 25-28. https://doi.org/10.1016/j.jmmm.2008.07.011
- Raveendran, A., Sebastian, M.T. and Raman, S. (2019), "Applications of microwave materials: a review", J. Electron. Mater., 48(5), 2601-2634. https://doi.org/10.1007/s11664-019-07049-1
- Rosca, I.D., Watari, F., Uo, M. and Akasaka, T. (2005), "Oxidation of multiwalled carbon nanotubes by nitric acid", Carbon, 43(15), 3124-3131. https://doi.org/10.1016/j.carbon.2005.06.019
- Saini, P. and Choudhary, V. (2013), "Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites", J. Nanopart. Res., 15(1), 1-7. https://doi.org/10.1007/s11051-012-1415-2
- Saini, P., Choudhary, V., Singh, B.P., Mathur, R.B. and Dhawan, S.K. (2011), "Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4-18.0 GHz range", Synthetic Metals, 161(15-16), 1522-1526. https://doi.org/10.1016/j.synthmet.2011.04.033
- Saini, P., Choudhary, V., Vijayan, N. and Kotnala, R.K. (2012), "Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles", J. Phys. Chem. C, 116(24), 13403-13412. https://doi.org/10.1021/jp302131w
- Singh, B.P., Choudhary, V., Saini, P., Pande, S., Singh, V.N. and Mathur, R.B. (2013), "Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites", J. Nanopart. Res., 15(4), 1-12. https://doi.org/10.1007/s11051-013-1554-0
- Singh, B.P., Bharadwaj, P., Choudhary, V. and Mathur, R.B. (2014), "Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites", Appl. Nanosci., 4(4), 421-428. https://doi.org/10.1007/s13204-013-0214-0
- Setua, D.K., Mordina, B., Srivastava, A.K., Roy, D. and Prasad, N.E. (2020), "Carbon nanofibers-reinforced polymer nanocomposites as efficient microwave absorber", In: Fiber-Reinforced Nanocomposites: Fundamentals and Applications, pp. 395-430. https://doi.org/10.1016/b978-0-12-819904-6.00018-9
- Shu, R., Zhang, G., Wang, X., Gao, X., Wang, M., Gan, Y., Shi, J. and He, J. (2018), "Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers", Chem. Eng. J., 337, 242-255. https://doi.org/10.1016/j.cej.2017.12.106
- Shu, R., Wu, Y., Li, Z., Zhang, J., Wan, Z., Liu, Y. and Zheng, M. (2019a), "Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band", Compos. Sci. Technol., 184, 107839. https://doi.org/10.1016/j.compscitech.2019.107839
- Shu, R., Li, W., Wu, Y., Zhang, J. and Zhang, G. (2019b), "Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band", Chem. Eng. J., 362, 513-524. https://doi.org/10.1016/j.cej.2019.01.090
- Shu, R., Li, W., Wu, Y., Zhang, J., Zhang, G. and Zheng, M. (2019c), "Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties", Compos. Part B: Eng., 178, 107518. https://doi.org/10.1016/j.compositesb.2019.107518
- Shu, R., Wu, Y., Zhang, J., Wan, Z. and Li, X. (2020a), "Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocomposites for electromagnetic wave absorption", Compos. Part B: Eng., 193, 108027. https://doi.org/10.1016/j.compositesb.2020.108027
- Shu, R., Wu, Y., Li, W., Zhang, J., Liu, Y., Shi, J. and Zheng, M. (2020b), "Fabrication of ferroferric oxide-carbon/reduced graphene oxide nanocomposites derived from Fe-based metal-organic frameworks for microwave absorption", Compos. Sci. Technol., 196, 108240. https://doi.org/10.1016/j.compscitech.2020.108240
- Shu, R., Zhang, J., Guo, C., Wu, Y., Wan, Z., Shi, J., Liu, Y. and Zheng, M. (2020c), "Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band", Chem. Eng. J., 384, 123266. https://doi.org/10.1016/j.cej.2019.123266
- Singh, N. and Aul, G.D. (2020), "Fabrication of cobalt filled multi-walled carbon nanotubes/polyurethane composite for microwave absorption", SN Appl. Sci., 2(12), 1-13. https://doi.org/10.1007/s42452-020-03755-2
- Singh, B.P., Saini, P., Gupta, T., Garg, P., Kumar, G., Pande, I., Pande, S., Seth, R.K., Dhawan, S.K. and Mathur, R.B. (2011), "Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation", J. Nanopart. Res., 13(12), 7065-7074. https://doi.org/10.1007/s11051-011-0619-1
- Singh, B.P., Choudhary, V., Saini, P. and Mathur, R.B. (2012), "Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding", AIP Advances, 2(2), 022151. https://doi.org/10.1063/1.4730043
- Singh, B.P., Saini, K., Choudhary, V., Teotia, S., Pande, S., Saini, P. and Mathur, R.B. (2014), "Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites", J. Nanopart. Res., 16(1), 2161. https://doi.org/10.1007/s11051-013-2161-9
- Song, S., Yang, H., Rao, R., Liu, H. and Zhang, A. (2010), "High catalytic activity and selectivity for hydroxylation of benzene to phenol over multi-walled carbon nanotubes supported Fe3O4 catalyst", Appl. Catalysis A: General, 375(2), 265-271. https://doi.org/10.1016/j.apcata.2010.01.008
- Su, X., Wang, J., Zhang, X., Huo, S., Dai, W. and Zhang, B. (2020), "Synergistic effect of polyhedral iron-cobalt alloys and graphite nanosheets with excellent microwave absorption performance", J. Alloys Compounds, 829, 154426. https://doi.org/10.1016/j.jallcom.2020.154426
- Sun, J., Wang, L., Yang, Q., Shen, Y. and Zhang, X. (2020), "Preparation of copper-cobalt-nickel ferrite/graphene oxide/polyaniline composite and its applications in microwave absorption coating", Progress Organic Coat., 141, 105552. https://doi.org/10.1016/j.porgcoat.2020.105552
- Tao, Y., Yin, P., Zhang, L., Feng, X., Wang, J., Zhang, Y., Wu, W., Liu, Y., Li, S. and Qiu, Z. (2019), "One-Pot Hydrothermal Synthesis of Co3O4/MWCNTs/Graphene Composites with Enhanced Microwave Absorption in Low Frequency Band", ChemNanoMat, 5(6), 847-857. https://doi.org/10.1002/cnma.201900173
- Tianjiao, B., Yan, Z., Xiaofeng, S. and Yuexin, D. (2011), "A study of the electromagnetic properties of Cobalt-multiwalled carbon nanotubes (Co-MWCNTs) composites", Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 176(12), 906-912. https://doi.org/10.1016/j.mseb.2011.05.016
- Verma, M., Chauhan, S.S., Dhawan, S.K. and Choudhary, V. (2017), "Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations", Compos. Part B: Eng., 120, 118-127. https://doi.org/10.1016/j.compositesb.2017.03.068
- Vinoy, K.J. and Jha, R.M. (1996), Radar Absorbing Material: From Theory to Design and Characterization, Springer, USA.
- Wang, X., Zhao, Z., Qu, J., Wang, Z. and Qiu, J. (2010), "Fabrication and characterization of magnetic Fe3O4-CNT composites", J. Phys. Chem. Solids, 71(4), 673-676. https://doi.org/10.1016/j.jpcs.2009.12.063
- Wu, N., Lv, H., Liu, J., Liu, Y., Wang, S. and Liu, W. (2016), "Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses", Phys. Chem. Chem. Phys., 18(46), 31542-31550. https://doi.org/10.1039/c6cp06066h
- Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163
- Xu, X., Ran, F., Fan, Z., Lai, H., Cheng, Z., Lv, T., Shao, L. and Liu, Y. (2019), "Cactus-inspired bimetallic metal-organic framework-derived 1D-2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance", ACS Appl. Mater. Interf., 11(14), 13564-13573. https://doi.org/10.1021/acsami.9b00356
- Yan, J., Huang, Y., Zhang, Z. and Liu, X. (2019), "Novel 3D microsheets contain cobalt particles and numerous interlaced carbon nanotubes for high-performance electromagnetic wave absorption", J. Alloys Compounds, 785, 1206-1214. https://doi.org/10.1016/j.jallcom.2019.01.275
- Yin, Y., Liu, X., Wei, X., Li, Y., Nie, X., Yu, R. and Shui, J. (2017), "Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber", ACS Appl. Mater. Interf., 9(36), 30850-30861. https://doi.org/10.1021/acsami.7b10067
- Yusuf, J.Y., Soleimani, H., Sanusi, Y.K., Adebayo, L.L., Sikiru, S. and Wahaab, F.A. (2020), "Recent advances and prospect of cobalt based microwave absorbing materials", Ceramics Int., 46(17), 26466-26485. https://doi.org/10.1016/j.ceramint.2020.07.244
- Zhang, D., Xu, F., Lin, J., Yang, Z. and Zhang, M. (2014), "Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2-18-GHz frequency range", Carbon, 80(1), 103-111. https://doi.org/10.1016/j.carbon.2014.08.044
- Zhao, D.L., Zhang, J.M., Li, X. and Shen, Z.M. (2010), "Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes", J. Alloys Compounds, 505(2), 712-716. https://doi.org/10.1016/j.jallcom.2010.06.122
- Zheng, X., Li, Y. and Fun, X. (2020), "Design of Efficient Microwave Absorbers Based on Cobalt-Based MOF/SrFe10CoTiO19/Carbon Nanofibers Nanocomposite", J. Superconduct. Novel Magnet., 33(9). https://doi.org/10.1007/s10948-020-05499-x
- Zhu, X., Wang, X., Liu, K., Meng, M. and Akhtar, M.N. (2020), "Microwave absorption characteristics of carbon foam decorated with BaFe12O19 and Ni0.5Co0.5Fe2O4 magnetic composite in X-band frequency", J. Magnet. Magnet. Mater., 513, 167258. https://doi.org/10.1016/j.jmmm.2020.167258