DOI QR코드

DOI QR Code

Cyclic behavior and performance of a coupled-steel plate shear wall with fuse pin

  • Usefvand, Mahdi (Department of Civil Engineering, Maragheh Branch, Islamic Azad University) ;
  • Maleki, Ahmad (Department of Civil Engineering, Maragheh Branch, Islamic Azad University) ;
  • Alinejad, Babak (Department of Civil Engineering, University of Maragheh)
  • Received : 2020.07.22
  • Accepted : 2021.08.02
  • Published : 2021.09.25

Abstract

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, a coupled steel plate shear wall with a yielding fuse is presented. The system uses a high-ductility fuse pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and fuse pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. To verify the finite element model results, two test specimens of coupled steel plate shear walls were validated. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. The results of the C-SPSW models revealed that the fuse pin caused an increase in the ultimate capacity by approximately 19% and the energy dissipation by 20% compared to the other C-SPSW.

Keywords

References

  1. ABAQUS-6.10 (2010), Standard user's manual. Hibbitt, Karlsson and Sorensen, Inc.
  2. AISC (2007), Steel design guide 20, steel plate shear walls, Chicago, IL, USA.
  3. AISC 341-16 (2016), AISC Seismic Provisions for Structural Steel Buildings, (ANSI/AISC 341-16), USA.
  4. Ali, M.M., Osman, S.A., Husam, O.A. and Al-Zand, A.W. (2018), "Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings", Steel Compos. Struct., Int. J., 26(3), 361-373. https://doi.org/10.12989/scs.2018.26.3.361
  5. ASCE7-10 (2010), Minimum Design Loads for Buildings and Other Structures, Standards, American Society of Civil Engineers, Reston, VA, USA.
  6. ATC-24 (1992), California, USA.
  7. Borello, D.J. and Fahnestock, L.A. (2012), "Behavior and mechanisms of steel plate shear walls with coupling", J. Constr. Steel Res., 74, 8-16. https://doi.org/10.1016/j.jcsr.2011.12.009
  8. Borello, D.J. and Fahnestock, L.A. (2013), "Seismic design and analysis of steel plate shear walls with coupling", J. Struct. Eng., 139(8), 1263-1273. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000576
  9. CAN/CSA-S16-09 (2009), Rexdale, Ontario, Canada, Canadian Standards Association.
  10. Chatterjee, A.K., Bhowmick, A. and Bagchi, A. (2015), "Development of a simplified equivalent braced frame model for Steel Plate Shear Wall systems", Steel Compos. Struct., Int. J., 18(3), 711-737. https://doi.org/10.12989/scs.2015.18.3.711
  11. Deng, E.F., Zong, L. and Ding, Y. (2019), "Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction", Steel Compos. Struct., Int. J., 32(3), 347-359. https://doi.org/10.12989/scs.2019.32.3.347
  12. Dhar, M.M. and Bhowmick, A.K. (2016), "Seismic response estimation of steel plate shear walls using nonlinear static methods", Steel Compos. Struct., Int. J., 20(4), 777-799. https://doi.org/10.12989/scs.2016.20.4.777
  13. Dimakogianni, D., Dougka, G., and Vayas, I. (2015), "Seismic behavior of frames with innovative energy dissipation systems (FUSEIS1-2)", Eng. Struct., 90, 83-95. https://doi.org/10.1016/j.engstruct.2015.01.054
  14. Dougka, G., Dimakogianni, D. and Vayas, I. (2014), "Innovative energy dissipation systems (FUSEIS 1-1) - Experimental analysis", J. Constr. Steel Res., 96, 69-80. https://doi.org/10.1016/j.jcsr.2014.01.003
  15. Dubina, D., and Dinu, F. (2014), "Experimental evaluation of dual frame structures with thin-walled steel panels", Thin-Wall. Struct., 78, 57-69. https://doi.org/10.1016/j.tws.2014.01.001
  16. Elgaaly, M., Caccese, V. and Du, C. (1993), "Postbuckling behavior of steel-plate shear walls under cyclic loads", J. Struct. Eng., 119(2), 588-605. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(588)
  17. FEMA 350 (2000), Federal Emergency Management Agency, Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Washington, DC, USA.
  18. FEMA P695 (2009), Quantification of building seismic performance factors, Technical Report P695, Applied Technology Council for the Federal Emergency Management Agency, Washington, DC, USA.
  19. Formisano, A., Mazzolani, F.M. and De Matteis, G. (2007), "Numerical analysis of slender steel shear panels for assessing design formulas", Int. J. Struct. Stab. Dyn., 7(02), 273-294. https://doi.org/10.1142/S0219455407002289
  20. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin-Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751
  21. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2020b), "Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203, 109866. https://doi.org/10.1016/j.engstruct.2019.109866
  22. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2021a), "Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs)", Structures, 29, 30-47. https://doi.org/https://doi.org/10.1016/j.istruc.2020.11.009
  23. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Zirakian, T. (2021b), "Study of effects of beam-column connection and column rigidity on the performance of SPSW system", J. Build. Eng., 33. https://doi.org/10.1016/j.jobe.2020.101821
  24. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021c), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., Int. J., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109
  25. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020c), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145
  26. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021d), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844
  27. Gorji Azandariani, M., Rousta, A.M., Mohammadi, M., Rashidi, M. and Abdolmaleki, H. (2021e), "Numerical and analytical study of ultimate capacity of steel plate shear walls with partial plate-column connection (SPSW-PC)", Structures, 33, 3066-3080. https://doi.org/10.1016/j.istruc.2021.06.046
  28. Gorji Azandariani, M., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Gorji Azandariani, A. (2021f), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Structures, 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041
  29. Hassanipour, A., Rahnavard, R., Mokhtari, A. and Rahnavard, N. (2015), "Numerical investigation on reduced beam web section moment connections under the effect of cyclic loading", J. Multidiscip. Eng. Sci. Technol. (JMEST), 2(8), 2054-2061.
  30. Hjelmstad, K.D. and Popov, E.P. (1983), "Cyclic behavior and design of link beams", J. Struct. Eng., 109(10), 2387-2403. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:10(2387)
  31. IS2800 (2014), Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No. 2800, Tehran, Iran.
  32. Ji, X., Wang, Y., Ma, Q. and Okazaki, T. (2016), "Cyclic behavior of very short steel shear links", J. Struct. Eng., 142(2). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001375
  33. Ji, X., Wang, Y., Ma, Q. and Okazaki, T. (2017), "Cyclic behavior of replaceable steel coupling beams", J. Struct. Eng., 143(2). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001661
  34. Kharrazi, M.H. (2005), "Rational method for analysis and design of steel plate shear walls", Ph.D. Dissertation; University of British Colombia, Vancouver, Canada.
  35. Li, C.H., Tsai, K.C., Chang, J.T. and Lin, C.H. (2011), "Cyclic test of a coupled steel plate shear wall substructure", Procedia Eng., 582-589. https://doi.org/10.1016/j.proeng.2011.07.073
  36. Li, C.-H., Tsai, K.-C., Chang, J.-T., Lin, C.-H., Chen, J.-C., Lin, T.-H. and Chen, P.-C. (2012), "Cyclic test of a coupled steel plate shear wall substructure", Earthq. Eng. Struct. Dyn., 41(9), 1277-1299. https://doi.org/10.1002/eqe.1180
  37. Lubell, A.S., Prion, H.G.L., Ventura, C.E. and Rezai, M. (2000), "Unstiffened steel plate shear wall performance under cyclic loading", J. Struct. Eng., 126(4), 453-460. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(453).
  38. Malley, J.O. and Popov, E.P. (1984), "Shear links in eccentrically braced frames", J. Struct. Eng., 110(9), 2275-2295. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:9(2275)
  39. Mohebkhah, A. and Azandariani, M.G. (2020), "Shear resistance of retrofitted castellated link beams: Numerical and limit analysis approaches", Eng. Struct., 203, 109864. https://doi.org/10.1016/j.engstruct.2019.109864
  40. Okazaki, T., Arce, G., Ryu, H.C. and Engelhardt, M.D. (2005), "Experimental study of local buckling, overstrength, and fracture of links in eccentrically braced frames", J. Struct. Eng., 131(10), 1526-1535. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1526)
  41. Park, H.-G., Kwack, J.-H., Jeon, S.-W., Kim, W.-K. and Choi, I.-R. (2007), "Framed Steel Plate Wall Behavior under Cyclic Lateral Loading", J. Struct. Eng., 133(3), 378-388. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:3(378)
  42. Popov, E.P. and Engelhardt, M.D. (1988), "Seismic eccentrically braced frames", J. Constr. Steel Res., 10(C), 321-354. https://doi.org/10.1016/0143-974X(88)90034-X
  43. Qin, Y., Lu, J.Y., Huang, L.C.X. and Cao, S. (2017), "Flexural behavior of beams in steel plate shear walls", Steel Compos. Struct., Int. J., 23(4), 473-481. https://doi.org/10.12989/scs.2017.23.4.473
  44. Rahnavard, R., Hassanipour, A. and Siahpolo, N. (2015), "Analytical study on new types of reduced beam section moment connections affecting cyclic behavior", Case Stud. Struct. Eng., 3, 33-51. https://doi.org/10.1016/j.csse.2015.03.001
  45. Rahnavard, R., Hassanipour, A. and Mounesi, A. (2016), "Numerical study on important parameters of composite steel-concrete shear walls", J. Constr. Steel Res., 121, 441-456. https://doi.org/10.1016/j.jcsr.2016.03.017
  46. Rahnavard, R., Hassanipour, A., Suleiman, M. and Mokhtari, A. (2017), "Evaluation on eccentrically braced frame with single and double shear panels", J. Build. Eng., 10, 13-25. https://doi.org/10.1016/j.jobe.2017.01.006
  47. Rahnavard, R., Rebelo, C., Craveiro, H.D. and Napolitano, R. (2020), "Understanding the cyclic performance of composite steel-concrete connections on steel bridges", Eng. Struct., 224, 111213. https://doi.org/10.1016/j.engstruct.2020.111213
  48. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T., and Salih, M.N.A. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., Int. J., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569
  49. Shekastehband, B., Azaraxsh, A.A. and Showkati, H. (2017), "Hysteretic behavior of perforated steel plate shear walls with beam-only connected infill plates", Steel Compos. Struct., Int. J., 25(4), 505-521. https://doi.org/10.12989/scs.2017.25.4.505
  50. Talebizadehsardari, P., Eyvazian, A., Gorji Azandariani, M., Nhan Tran, T., Kumar Rajak, D. and Babaei Mahani, R. (2020), "Buckling analysis of smart beams based on higher order shear deformation theory and numerical method", Steel Compos. Struct., Int. J., 35(5), 635-640. https://doi.org/https://doi.org/10.12989/scs.2020.35.5.635
  51. Vatansever, C. and Berman, J.W. (2015), "Analytical investigation of thin steel plate shear walls with screwed infill plate", Steel Compos. Struct., Int. J., 19(5), 1145-1165. https://doi.org/10.12989/scs.2015.19.5.1145
  52. Vatansever, C. and Yardimci, N. (2011), "Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections", Steel Compos. Struct., Int. J., 11(3), 251-271. https://doi.org/10.12989/scs.2011.11.3.251
  53. Wang, M., Shi, Y., Xu, J., Yang, W. and Li, Y. (2015), "Experimental and numerical study of unstiffened steel plate shear wall structures", J. Constr. Steel Res., 112, 373-386. https://doi.org/10.1016/j.jcsr.2015.05.002