Acknowledgement
This research was supported by 2021 Baekseok University Research Fund.
References
- M. Ridley. (2019). Explainable Artificial Intelligence. Ethics of Artificial Intelligence, (299), 28-46. DOI : 10.29242/rli.299.3
- A. Ignatiev. (2020). Towards Trustable Explainable AI. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. DOI : 10.24963/ijcai.2020/726
- S. Mahamood. (2019). Explainable Artificial Intelligence and its potential within Industry. Proceedings of the 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI 2019). DOI : 10.18653/v1/w19-8401
- A. Holzinger. (2018). From Machine Learning to Explainable AI. 2018 World Symposium on Digital Intelligence for Systems and Machines (DISA). (pp. 55-66). IEEE. DOI : 10.1109/disa.2018.8490530
- B. S. Miguel, A. Naseer & H. Inakoshi. (2020). Putting Accountability of AI Systems into Practice. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. DOI : 10.24963/ijcai.2020/768
- E. Daglarli, (2020). Explainable Artificial Intelligence (xAI) Approaches and Deep Meta-Learning Models. Advances and Applications in Deep Learning. 79. DOI : 10.5772/intechopen.92172
- Jo, T. (2020). Decision Tree. Machine Learning Foundations, 141-165. DOI : 10.1007/978-3-030-65900-4_73.
- F. Mahan, M. Mohammadzad, S. M. Rozekhani & W. Pedrycz. (2021). Chi-MFlexDT: Chi-square-based multi flexible fuzzy decision tree for data stream classification. Applied Soft Computing, 105, 107301. DOI : 10.1016/j.asoc.2021.107301
- L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M., Specter & L. Kagal. (2018). Explaining Explanations: An Overview of Interpretability of Machine Learning. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). DOI : 10.1109/dsaa.2018.00018
- M. Langer et al. (2021). What do we want from Explainable Artificial Intelligence (XAI)? - A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research. Artificial Intelligence, 296, 103473. DOI : 10.1016/j.artint.2021.103473
- M. Nassar, K. Salah, M. H. ur Rehman & D. Svetinovic. (2020). Blockchain for explainable and trustworthy artificial intelligence. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(1), e1340. DOI : 10.1002/widm.1340
- Z. Zhang, Y. Dai & J. Sun. (2020). Deep learning based point cloud registration: an overview. Virtual Reality & Intelligent Hardware, 2(3), 222-246. DOI : 10.1016/j.vrih.2020.05.002
- H. J. Kim, K. H. Han & S. S. Shin. (2021). Hash-based SSDP for IoT Device Security. Journal of the Korea Convergence Society, 12(5), 9-16. https://doi.org/10.15207/JKCS.2021.12.5.009
- G. Caldarelli & J. Ellu. (2021). The blockchain ORACLE problem in Decentralized finance - A Multivocal Approach. DOI : 10.20944/preprints202107.0231.v1
- G. Caldarelli. (2020). Understanding the Blockchain Oracle Problem: A Call for Action. Information, 11(11), 509. DOI : 10.3390/info11110509