DOI QR코드

DOI QR Code

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Received : 2019.11.04
  • Accepted : 2020.06.08
  • Published : 2021.01.25

Abstract

Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.

Keywords

Acknowledgement

The authors acknowledge the constructive and valuable comments from three anonymous reviewers. This research was supported by the Kyungpook National University Research Fund, 2018. The Lawrence Livermore National Laboratory is operated for the U. S. Department of Energy under Contract DE-AC52-07NA27344. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

References

  1. G. Katata, M. Ota, H. Terada, M. Chino, H. Nagai, Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: source term estimation and local-scale atmospheric dispersion in early phase of the accident, J. Environ. Radioact. 109 (2012) 103-113. https://doi.org/10.1016/j.jenvrad.2012.02.006
  2. E.-C. Chang, K. Yoshimura, A semi-Lagrangian advection scheme for radioactive tracers in the NCEP Regional Spectral Model (RSM), Model Dev 8 (2015) 3247-3255, https://doi.org/10.5194/gmd-8-3247-2015.
  3. G.S. Choi, J.M. Lim, K.S.S. Lim, K.H. Kim, J.H. Lee, Characteristics of regional scale atmospheric dispersion around Ki-Jang research reactor using the Lagrangian Gaussian puff dispersion model, Nuclear Engineering and Technology 50 (1) (2018) 68-79. https://doi.org/10.1016/j.net.2017.10.002
  4. K.S.S. Lim, J.M. Lim, H.H. Shin, J. Hong, Y.Y. Ji, W. Lee, Impacts of sub-grid-scale orography parameterization on simulated atmospheric fields over Korea using a high-resolution atmospheric forecast model, Meteorol. Atmos. Phys. 131 (4) (2019) 975-985. https://doi.org/10.1007/s00703-018-0615-4
  5. W.C. Skamarock, J.B. Klemp, J. Dudhia, D.O. Gill, Z. Liu, J. Berner, W. Wang, J.G. Powers, M.G. Duda, D.M. Barker, X.-Y. Huang, A Description of the Advanced Research WRF Version 4, NCAR Tech, 2019, p. 145, https://doi.org/10.5065/1dfh-6p97. Note NCAR/TN-556+STR.
  6. U.Y. Byun, S.Y. Hong, H. Shin, J.W. Lee, J.I. Song, S.J. Hahm, J.K. Kim, H.W. Kim, J.S. Kim, WRF-based short-range forecast system of the Korea Air Force: verification of prediction skill in 2009 summer, Atmosphere 21 (2) (2011) 197-208. https://doi.org/10.14191/ATMOS.2011.21.2.197
  7. J.W. Lee, S.Y. Hong, A numerical simulation study of orographic effects for a heavy rainfall event over Korea using the WRF model, Atmosphere 16 (4) (2006) 319-332.
  8. S.Y. Hong, J.W. Lee, Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea, Atmos. Res. 93 (4) (2009) 818-831. https://doi.org/10.1016/j.atmosres.2009.03.015
  9. H.H. Park, J. Lee, E.C. Chang, M. Joh, High-resolution simulation of snowfall over the Korean eastern coastal region using WRF model: sensitivity to domain nesting-down strategy, Asia-Pacific Journal of Atmospheric Sciences (2019) 1-14.
  10. S.Y. Hong, N.K. Moon, K.S.S. Lim, J.W. Kim, Future climate change scenarios over Korea using a multi-nested downscaling system: a pilot study, Asia-Pacific Journal of Atmospheric Sciences 46 (4) (2010) 425-435. https://doi.org/10.1007/s13143-010-0024-1
  11. E.S. Im, J.B. Ahn, S.R. Jo, Regional climate projection over South Korea simulated by the HadGEM2-AO and WRF model chain under RCP emission scenarios, Clim. Res. 63 (3) (2015) 249-266. https://doi.org/10.3354/cr01292
  12. J. Lee, H.H. Shin, S.-Y. Hong, P.A. Jimenez, J. Dudhia, J. Hong, Impacts of sub-grid-scale orography parameterization on simulated surface layer wind and monsoonal precipitation in the high-resolution WRF model, J. Geophys. Res. 120 (2) (2015) 644-653. https://doi.org/10.1002/2014jd022747
  13. D. Lee, S.K. Min, J. Jin, J.W. Lee, D.H. Cha, M.S. Suh, J.B. Ahn, S.Y. Hong, H.S. Kang, M. Joh, Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study, Clim. Dynam. 49 (11-12) (2017) 4121-4139. https://doi.org/10.1007/s00382-017-3566-4
  14. J.S. Scire, D.G. Strimaitis, R.J. Yamartino, A User's Guide for the CALPUFF Dispersion Model, Earth Tech, Inc., Concord, MA, 2000, p. 10.
  15. United States Environmental Protection Agency (EPA), Analyses of the CALMET/CALPUFF Modeling System in a Screening Mode, Office of Air Quality Planning and Standards, Research Triangle Park, NC, 1998. EPA-454/R-98-010.
  16. S.Y. Hong, Y. Noh, J. Dudhia, A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev. 134 (9) (2006) 2318-2341. https://doi.org/10.1175/MWR3199.1
  17. S.Y. Hong, A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon, Q. J. R. Meteorol. Soc. 136 (651) (2010) 1481-1496. https://doi.org/10.1002/qj.665
  18. Y. Noh, W.G. Cheon, S.Y. Hong, S. Raasch, Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data, Boundary-Layer Meteorol. 107 (2) (2003) 401-427. https://doi.org/10.1023/A:1022146015946
  19. D.-H. Cha, D.-K. Lee, S.-Y. Hong, Impacts of boundary layer processes on seasonal simulation of the East Asia summer monsoon using a Regional Climate Model, Meteorol. Atmos. Phys. 100 (2009) 53-72. https://doi.org/10.1007/s00703-008-0295-6
  20. K.-S.S. Lim, S.-Y. Hong, J.-H. Yoon, J. Han, Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolutions, Weather Forecast. 29 (2014) 1143-1154. https://doi.org/10.1175/WAF-D-13-00143.1
  21. K.-S.S. Lim, S.-Y. Hong, Investigation of aerosol indirect effects on simulated flash-flood heavy rainfall over Korea, Meteorol. Atmos. Phys. 118 (2012) 199-214. https://doi.org/10.1007/s00703-012-0216-6
  22. W.C. Skamarock, J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, M.G. Duda, X.-Y. Huang, W. Wang, J.G. Powers, A Description of the Advanced Research WRF Version 3, NCAR Tech, 2008, p. 113, https://doi.org/10.5065/D68S4MVH. NoteNCAR/TN-475+STR.
  23. S.Y. Hong, J.O.J. Lim, The WRF single-moment 6-class microphysics scheme (WSM6), Asia-Pacific Journal of Atmospheric Sciences 42 (2) (2006) 129-151.
  24. J. Dudhia, S.Y. Hong, K.S. Lim, A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations, Journal of the Meteorological Society of Japan. Ser. II 86 (2008) 33-44.
  25. J.S. Kain, The Kain-Fritsch convective parameterization: an update, J. Appl. Meteorol. 43 (1) (2004) 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  26. J.S. Kain, J.M. Fritsch, A one-dimensional entraining/detraining plume model and its application in convective parameterization, J. Atmos. Sci. 47 (23) (1990) 2784-2802. https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
  27. F. Chen, J. Dudhia, Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity, Mon. Weather Rev. 129 (4) (2001) 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  28. M.J. Iacono, J.S. Delamere, E.J. Mlawer, M.W. Shephard, S.A. Clough, W.D. Collins, Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models, J. Geophys. Res.: Atmosphere 113 (D13) (2008).
  29. J.-J. Morcrette, H.W. Barker, J.N.S. Cole, M.J. Iacono, R. Pincus, Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system, Mon. Weather Rev. 136 (2008) 4773-4798, https://doi.org/10.1175/2008MWR2363.1.
  30. P.A. Jimenez, J. Dudhia, Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model, Journal of Applied Meteorology and Climatology 51 (2012) 300-316. https://doi.org/10.1175/JAMC-D-11-084.1
  31. M. Werner, Shuttle radar topography mission (SRTM), mission overview, Jpn. Telecom. 55 (2001) 75-79.
  32. B. Rabus, M. Eineder, R. Am, R. Bamler, The shuttle radar topography missionda new class of digital elevation models acquired by space borne radar, J Photogramm Remote Sens 57 (2004) 241-262.
  33. EPA, "An evaluation of a solar radiation/delta-T (SRDT) method for estimating pasquill-gifford (P-G) stability categories, in: Technical Report Prepared by the U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, 1993. Research Triangle Park, NC (EPA-454/R-93-055).
  34. D. Golder, Relations among stability parameters in the surface layer, Boundary-Layer Meteorol. 3 (1972) 47-58. https://doi.org/10.1007/BF00769106
  35. M.H. Han, E.H. Kim, H.J. Jeong, H.S. Jeong, M.S. Park, W.T. Hwang, Field tracer experiments under severe weather conditions for the validation of the dispersion of radioactive materials, Journal of Radiation Protection 38 (4) (2013) 208-2013. https://doi.org/10.14407/jrp.2013.38.4.208
  36. M. Nakanishi, H. Niino, Development of an improved turbulence closure model for the atmospheric boundary layer, J. Meteorol. Soc. Jpn. 87 (2009) 895-912. https://doi.org/10.2151/jmsj.87.895
  37. A.A.M. Holtslag, B.A. Boville, Local versus nonlocal boundary-layer diffusion in a global climate model, J. Clim. 6 (1993), 1925-1842.
  38. H.H. Shin, S.-Y. Hong, Inter-comparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99, Boundary-Layer Meteorol. 139 (2) (2011) 261-281. https://doi.org/10.1007/s10546-010-9583-z
  39. B. Yang, L.K. Berg, Y. Qian, C. Wang, Z. Hou, Y. Liu, H.H. Shin, S. Hong, M. Pekour, Parametric and structural sensitivities of turbine-height wind speeds in the boundary layer parameterizations in the Weather Research and Forecasting model, J. Geophys. Res.: Atmosphere 124 (2019) 5951-5969.
  40. D. Munoz-Esparza, B. Cannadillas, T. Neumann, J. van Beeck, Turbulent fluxes, stability and shear in the offshore environment: mesoscale modeling and field observations at FINO1, J. Renew. Sustain. Energy 4 (2012), 063236.
  41. S.G. Benjamin, Co-authors, A north American hourly assimilation and model forecast cycle: the Rapid refresh, Mon. Weather Rev. 144 (2016) 1669-1694. https://doi.org/10.1175/MWR-D-15-0242.1
  42. D.E.K. Dzebre, M.S. Adaramola, A preliminary sensitivity study of planetary boundary layer parameterization schemes in the Weather Research and Forecasting model to surface winds to coastal Ghana, Renew. Energy 146 (2020) 66-86. https://doi.org/10.1016/j.renene.2019.06.133
  43. B.-S. Han, K.-H. Kwak, J.-J. Baik, Diurnal variations of O3 and NO2 concentrations in an urban park in summer: effects of air temperature and wind speed, Journal of Korean Society for Atmospheric Environment 32 (2016) 536-546. https://doi.org/10.5572/KOSAE.2016.32.5.536
  44. Y.-H. Ryu, J.-J. Baik, K.-H. Kwak, S. Kim, N. Moon, Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area, Atmos. Chem. Phys. 13 (2013) 2177-2194. https://doi.org/10.5194/acp-13-2177-2013
  45. J.C. Chang, P. Franzese, K. Chayantrakom, S.R. Hanna, Evaluations of CALPUFF, HPAC, and VLSTRACK with two mesoscale field datasets, J. Appl. Meteorol. 42 (2003) 453-466.