References
- M. Omidi, N. Omidi, H. Asgari, M.G. Eskandari, Modeling and forecasting power generation and consumption in Iran, J. Manag. Econ. 27 (1) (2016), 83-71 (in Persian).
- A.J.C. Pereira, J.T. Saraiva, Generation expansion planning (GEP) a long-term approach using system dynamics and genetic algorithms (GAs), Energy 36 (2011) 5180-5199, https://doi.org/10.1016/j.energy.2011.06.021.
- KPX, The 8th Basic Plan for Long-Term Electricity Supply and Demand (2017-2031), Ministry of Trade, Industry and Energy, 2017. No. 2017-2611.
- D. Min, J. Ryu, D.G. Choi, Effects of the move towards renewables on the power system reliability and flexibility in South Korea, Energy Rep. 6 (2020) 406-417, https://doi.org/10.1016/j.egyr.2020.02.007.
- U. Nawaz, T.N. Malik, M.M. Ashraf, Least-cost generation expansion planning using whale optimization algorithm incorporating emission reduction and renewable energy sources, Int. Trans. Electr. Energ. Syst. 30 (2019) e12238, https://doi.org/10.1002/2050-7038.12238.
- A. Bhuvanesh, S.J. Christa, S. Kannan, M.K. Pandiyan, Aiming towards pollution free future by high penetration of renewable energy sources in electricity generation expansion planning, Futures 104 (2018) 25-36, https://doi.org/10.1016/j.futures.2018.07.002.
- S. Chen, P. Liu, Z. Li, Multi-regional power generation expansion planning with air pollutants emission constraints, Renew. Sustain. Energy Rev. 112 (2019) 382-394, https://doi.org/10.1016/j.rser.2019.05.062.
- H.H. Alhelou, S.J. Mirjalili, R. Zamani, P. Siano, Assessing the optimal generation technology mix determination considering demand response and EVs, Int. J. Electr. Power Energy Syst. 119 (2020) 105871, https://doi.org/10.1016/j.ijepes.2020.105871.
- R. Hemmati, H. Saboori, M.A. Jirdehi, Multistage generation expansion planning incorporating large scale energy storage systems and environmental pollution, Renew. Energy 97 (2016) 636-645, https://doi.org/10.1016/j.renene.2016.06.020.
- A. Das, A. Halder, R. Mazumder, V.K. Saini, J. Parikh, K.S. Parikh, Bangladesh power supply scenarios on renewable and electricity import, Energy 155 (2018) 651-667, https://doi.org/10.1016/j.energy.2018.04.169.
- K. Rajesh, A. Bhuvanesh, S. Kannan, C. Thangaraj, Least cost generation expansion planning with solar power plant using Differential Evolution algorithm, Renew. Energy 85 (2016) 677-686, https://doi.org/10.1016/j.renene.2015.07.026.
- A.A. Majd, E. Farjah, M. Rastegar, Composite generation and transmission expansion planning toward high renewable energy penetration in Iran power grid, IET Renew. Power Gener. 14 (2020) 1520-1528, https://doi.org/10.1049/iet-rpg.2019.0673.
- Iran Atomic Energy Production and Development Holding Company (www.aeoi.org.ir).
- M. Dahaghin, Optimal Generation Expansion Planning (By Genetic Algorithm), Tarbiat Modares University, 2004 (in Persian).
- Iran Grid Management Co, National Dispatching Reports, 2019. https://www.igmc.ir.
- Iran Electric Network Power Company (www.igmc.ir).
- Ministry of Power, Statistics, and Information Network. (isn.moe.gov.ir).
- G.L. de Los-Dantos, L. Mendosa-Gonzalez, Heat Rate Curve and Breakeven Point Model for Combine Cycle Gas Turbine Plants. https://doi.org/10.13140/RG.2.2.21980.03201.
- A. Mohseni, M. Abedi, G. Gharehpetian, Generation expansion planning and generation unit location based on IGA and AHP, JEM 3 (2013) 2-13. http://energy.kashanu.ac.ir/article-1-39-en.html.
- N. Ayoobian, R. Mousarezaei, The role of nuclear power in the reduction of environmental pollutants and climate changes compared to other power plants in Iran, J. Nucl. Sci. Technol. 39 (2018) 49-60, https://doi.org/10.24200/nst.2018.1047.
- TPPH, Specifications of Operation of Power Plant Units in the Country, 2020. https://www.tpph.ir.
- IAEA, Wien Automatic System Planning (WASP) Package, International Atomic Energy Agency, Vienna, Austria, 2001.
- X. Berisha, B. Hoxha, D. Meha, Efficiency analyses for small hydro-power plant with Francis turbine, Int. J. Mod. Trends Eng. Res. (2017) 155-164.
- A.J. Wood, B.F. Wollenberg, G.B. Sheble, Power Generation, Operation, and Control, John Wiley and Sons, 2013.
- INGEROP, Study of the Cost of Nuclear Power, Department of Energy, South Africa, 2013.
- M. Nasrullah, comparative economic assessment between SMR and large plant in comparison with different energy resources taking into account the environmental aspect, Ketenagalistrikan dan Energi Terbarukan 12 (2013) 91-102.
- V. Kuznetsov, A. Lokhov, Current Status, Technical Feasibility and Economics of Small Nuclear Reactors, Nuclear energy agency Organisation of economic cooperation and development, Paris, 2011.
- M.K. Lee, Economic Assessment of SMART in the Republic of Korea, IAEA, 2002. No. IAEA-CSP-14/P.
- GIF EMWG, Cost Estimating Guidelines for Generation IV Nuclear Energy Systems, GIF EMWG, Boulogne-Billancourt, 2007. GIF/EMWG/2007/004.
- T.J. Harrison, M.A. Moore, K.A. Williams, J.D. Rader, G4ECONS User Manual, GIF EMWG, 2018.
- S. Kim, H. Jang, R. Gao, C. Kim, Y. Chung, S. Bang, Break-even point Analysis of sodium-cooled fast reactor capital investment cost comparing the direct disposal option and pyro-sodium-cooled fast reactor nuclear fuel cycle option in Korea, Sustainability 9 (2017) 1518. https://doi.org/10.3390/su9091518
- W. Xu, J. Cai, S. Liu, Q. Tang, Analysis of the influences of thermal correlations on neutronicethermohydraulic coupling calculation of SCWR, Nucl. Eng. Des. 284 (2015) 50-59, https://doi.org/10.1016/j.nucengdes.2014.11.043.
- M. Moore, J. Pencer, L.K. Leung, R. Sadhankar, Knowledge Gaps in Economic Analyses of Advanced Reactor Concepts, the 19th Pacific Basin Nucl. Conf., Vancouver, British Columbia, Canada, 2014.
- A. Brolly, M. Halasz, M. Szieberth, L. Nagy, S. Feher, Physical model of the nuclear fuel cycle simulation code SITON, Ann. Nucl. Energy 99 (2017) 471-483, https://doi.org/10.1016/j.anucene.2016.10.001.
- L. Luzzi, A. Cammi, V. Di Marcello, S. Lorenzi, D. Pizzocri, P. Van Uffelen, Application of the TRANSURANUS code for the fuel pin design process of the ALFRED reactor, Nucl. Eng. Des. 277 (2014) 173-187, https://doi.org/10.1016/j.nucengdes.2014.06.032.
- C. Bohtz, S. Gokarn, E. Conte, Integrated Solar Combined Cycles (ISCC) to meet renewable targets and reduce CO2 emissions, in: Power Gen Europe Conference, Austria, 2013.