DOI QR코드

DOI QR Code

Design and performance prediction of large-area hybrid gamma imaging system (LAHGIS) for localization of low-level radioactive material

  • Lee, Hyun Su (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Jae Hyeon (Department of Nuclear Engineering, Hanyang University) ;
  • Lee, Junyoung (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Chan Hyeong (Department of Nuclear Engineering, Hanyang University)
  • Received : 2020.03.30
  • Accepted : 2020.09.14
  • Published : 2021.04.25

Abstract

In the present study, a large-area hybrid gamma imaging system was designed by adopting coded aperture imaging on the basis of a large-area Compton camera to achieve high imaging performance throughout a broad energy range (100-2000 keV). The system consisting of a tungsten coded aperture mask and monolithic NaI(Tl) scintillation detectors was designed through a series of Geant4 Monte Carlo radiation transport simulations, in consideration of both imaging sensitivity and imaging resolution. Then, the performance of the system was predicted by Geant4 Monte Carlo simulations for point sources under various conditions. Our simulation results show that the system provides very high imaging sensitivity (i.e., low values for minimum detectable activity, MDA), thus allowing for imaging of low-activity sources at distances impossible with coded aperture imaging or Compton imaging alone. In addition, the imaging resolution of the system was found to be high (i.e., around 6°) over the broad energy range of 59.5-1330 keV.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2017M2A8A4015258, NRF-2019M2D2A1A02059814) and Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (No. 20191510301040).

References

  1. L.E. Smith, Z. He, D.K. Wehe, G.F. Knoll, S.J. Wilderman, Design and modeling of the hybrid portable gamma camera system, IEEE Trans. Nucl. Sci. 45 (1998) 963-969, 3. https://doi.org/10.1109/23.682687
  2. Y. Kim, J.H. Kim, J. Lee, C.H. Kim, Large-area Compton camera for high-speed and 3-D imaging, IEEE Trans. Nucl. Sci. 65 (11) (2018) 2817-2822. https://doi.org/10.1109/TNS.2018.2874890
  3. M. Galloway, A. Zoglauer, M. Amman, S.E. Boggs, P.N. Luke, Simulation and detector response for the high efficiency multimode imager, Nucl. Instrum. Methods A. 652 (1) (2011) 641-645. https://doi.org/10.1016/j.nima.2010.08.101
  4. A. Kishimoto, J. Kataoka, T. Nishiyama, T. Fujita, K. Takeuchi, H. Okochi, H. Ogata, H. Kuroshima, S. Ohsuka, S. Nakamura, M. Hirayanagi, S. Adachi, T. Uchiyama, H. Suzuki, Performance and field tests of a handheld Compton camera using 3-D position-sensitive scintillators coupled to multi-pixel photon counter arrays, J. Instrum. 9 (2014).
  5. S. Takeda, A. Harayama, Y. Ichinohe, H. Odaka, S. Watanabe, T. Takahashi, H. Tajima, K. Genba, D. Matsuura, H. Ikebuchi, Y. Kuroda, T. Tomonaka, A portable Si/CdTe Compton camera and its applications to the visualization of radioactive substances, Nucl. Instrum. Methods A. 787 (2015) 207-211. https://doi.org/10.1016/j.nima.2014.11.119
  6. C.G. Wahl, W.R. Kaye, W. Wang, F. Zhang, J.M. Jaworski, A. King, Y.A. Boucher, Z. He, The Polaris-H imaging spectrometer, Nucl. Instrum. Methods A. 784 (2015) 377-381. https://doi.org/10.1016/j.nima.2014.12.110
  7. F. Hueso-Gonzalez, G. Pausch, J. Petzoldt, K.E. R omer, W. Enghardt, Prompt gamma rays detected with a BGO block Compton camera reveal range deviations of therapeutic proton beams, IEEE Trans. Radiat. Plasma Med. Sci. 1 (1) (2017) 76-86. https://doi.org/10.1109/TNS.2016.2622162
  8. Y.S. Kim, J.H. Kim, H.S. Lee, H.R. Lee, J.H. Park, J.H. Park, H. Seo, C. Lee, S.H. Park, C.H. Kim, Development of Compton imaging system for nuclear material monitoring at pyroprocessing test-bed facility, J. Nucl. Sci. Technol. 53 (12) (2016) 2040-2048. https://doi.org/10.1080/00223131.2016.1199333
  9. Y. Shikaze, Y. Nishizawa, Y. Sanada, T. Torii, J. Jiang, K. Shimazoe, H. Takahashi, M. Yoshino, S. Ito, T. Endo, K. Tsutsumi, S. Kato, H. Sato, Y. Usuki, S. Kurosawa, K. Kamada, A. Yoshikawa, Field test around Fukushima Daiichi nuclear power plant site using improved Ce:Gd3(Al,Ga)5O12 scintillator Compton camera mounted on an unmanned helicopter, J. Nucl. Sci. Technol. 53 (12) (2016) 1907-1918. https://doi.org/10.1080/00223131.2016.1185980
  10. J.E. Gormley, W.L. Rogers, N.H. Clinthorne, D.K. Wehe, G.F. Knoll, Experimental comparison of mechanical and electronic gamma-ray collimation, Nucl. Instrum. Methods A. 397 (2) (1997) 440-447. https://doi.org/10.1016/S0168-9002(97)00403-8
  11. L.E. Smith, C. Chen, D.K. Wehe, Z. He, Hybrid collimation for industrial gammaray imaging: combining spatially coded and Compton aperture data, Nucl. Instrum. Methods A. 462 (3) (2001) 576-587. https://doi.org/10.1016/S0168-9002(00)01148-7
  12. M. Galloway, A. Zoglauer, S.E. Boggs, M. Amman, A combined Compton and coded-aperture telescope for medium-energy gamma-ray astrophysics, Astron. Astrophys. 614 (2018) A93. https://doi.org/10.1051/0004-6361/201731122
  13. S.R. Gottesman, E.E. Fenimore, New family of binary arrays for coded aperture imaging, Appl. Optic. 28 (20) (1989) 4344-4352. https://doi.org/10.1364/AO.28.004344
  14. R. Accorsi, F. Gasparini, R.C. Lanza, A coded aperture for high-resolution nuclear medicine planar imaging with a conventional Anger camera: experimental results, IEEE Trans. Nucl. Sci. 48 (6) (2001) 2411-2417. https://doi.org/10.1109/23.983251
  15. S.J. Kaye, W.R. Kaye, Z. He, 4π coded aperture imaging using 3d position-sensitive CdZnTe detectors, in: 2008 IEEE Nuclear Science Symposium Conference Record, 2008, pp. 711-713.
  16. Y.S. Kim, J.H. Kim, H.S. Lee, C.H. Kim, Position-sensitive NaI(Tl) detector module for large-area Compton camera, J. Kor. Phys. Soc. 72 (1) (2018) 26-32. https://doi.org/10.3938/jkps.72.26
  17. E. Caroli, J.B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, Coded aperture imaging in X- and gamma-ray astronomy, Space Sci. Rev. 45 (3) (1987) 349-403. https://doi.org/10.1007/BF00171998
  18. R. Accorsi, Design of a Near-Field Coded Aperture Cameras for High-Resolution Medical and Industrial Gamma-Ray Imaging (Ph.D. dissertation), Massachusetts Inst. Tech., 2001.
  19. U.B. Jayanthi, J. Braga, Physical implementation of an antimask in URA based coded mask systems, Nucl. Instrum. Methods A. 310 (3) (1991) 685-689. https://doi.org/10.1016/0168-9002(91)91118-F
  20. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, P. Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cortes-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli, P. Gueye, P. Gumplinger, A.S. Howard, I. Hrivnacova, S. Hwang, S. Incerti, A. Ivanchenko, V.N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovic, M.G. Pia, W. Pokorski, J.M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. RisticFira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tome, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Recent developments in Geant4, Nucl. Instrum. Methods A. 835 (2016) 186-225. https://doi.org/10.1016/j.nima.2016.06.125
  21. J.H. Kim, J. Lee, Y. Kim, H.S. Lee, C.H. Kim, Development of hybrid shielding system for large-area Compton camera: a Monte Carlo study, Nucl. Eng. Technol. 52 (10) (October 2020) 2361-2369. https://doi.org/10.1016/j.net.2020.04.003
  22. L.A. Shepp, Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imag. 1 (2) (1982) 113-122. https://doi.org/10.1109/TMI.1982.4307558
  23. E. Munoz, J. Barrio, J. Bernabeu, A. Etxebeste, C. Lacasta, G. Llosa, A. Ros, J. Roser, J.F. Oliver, Study and comparison of different sensitivity models for a two-plane Compton camera, Phys. Med. Biol. 63 (13) (2018) 135004. https://doi.org/10.1088/0031-9155/63/13/135004
  24. W. Lee, D. Wehe, Hybrid gamma ray imagingdmodel and results, Nucl. Instrum. Methods A. 579 (1) (2007) 200-204. https://doi.org/10.1016/j.nima.2007.04.039
  25. S.R. Tornga, Mobile, Hybrid Compton/coded Aperture Imaging for Detection, Identification and Localization of Gamma-Ray Sources at Stand-Off Distances, Univ. of New Mexico, 2013.
  26. A. Poitrasson-Riviere, B.A. Maestas, M.C. Hamel, S.D. Clarke, M. Flaska, S.A. Pozzi, G. Pausch, C.-M. Herbach, A. Gueorguiev, M.F. Ohmes, J. Stein, Monte Carlo investigation of a high-efficiency, two-plane Compton camera for long-range localization of radioactive materials, Prog. Nucl. Energy 81 (2015) 127-133. https://doi.org/10.1016/j.pnucene.2015.01.009
  27. L.J. Meng, D.K. Wehe, Feasibility study of using hybrid collimation for nuclear environmental imaging, IEEE Trans. Nucl. Sci. 50 (2003) 1103-1110. https://doi.org/10.1109/TNS.2003.815135

Cited by

  1. Development and performance evaluation of large-area hybrid gamma imager (LAHGI) vol.53, pp.8, 2021, https://doi.org/10.1016/j.net.2021.01.036