DOI QR코드

DOI QR Code

Evaluation of correlations for prediction of onset of heat transfer deterioration for vertically upward flow of supercritical water in pipe

  • Sahu, Suresh (Engineering Sciences Discipline, Homi Bhabha National Institute) ;
  • Vaidya, Abhijeet M. (Reactor Engineering Division, Bhabha Atomic Research Centre)
  • Received : 2020.01.05
  • Accepted : 2020.09.12
  • Published : 2021.04.25

Abstract

Supercritical water has great potential as a coolant for nuclear reactor. Its use will lead to higher thermal efficiency of Rankine cycle. However, in certain conditions heat transfer may get deteriorated which may lead to undesirable high clad surface temperature. It is necessary to estimate the operating conditions in which heat transfer deterioration (HTD) will take place, so as to establish thermal margins for safe reactor operation. In the present work, the heat flux corresponding to onset of HTD for vertically upward flow of supercritical water in a pipe is obtained over a wide range of system parameters, namely pressure, mass flux, and pipe diameter. This is done by performing large number of simulations using an in-house CFD code, which is especially developed and validated for this purpose. The identification of HTD is based on observance of one or more peak/s in the computed wall temperature profile. The existing correlations for predicting the onset of HTD are compared against the results obtained by present simulations as well as available sets of experimental data. It is found that the prediction accuracy of the correlation proposed by Dongliang et al. is best among the existing correlations.

Keywords

References

  1. I.L. Pioro, H.F. Khartabil, R.B. Duffey, Heat transfer to supercritical fluids flowing in channelsdempirical correlations (survey), Nucl. Eng. Des. 230 (2004) 69-91. https://doi.org/10.1016/j.nucengdes.2003.10.010
  2. U.S. DOE, Nuclear Energy Research Advisory Committee and the Generation IV International Forum, A Technology Roadmap for Generation IV Nuclear Energy Systems, 2002.
  3. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, 2007.
  4. J. Jackson, J. Jd, H. Wb, Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes under Turbulent Conditions, 1979.
  5. K. Yamagata, K. Nishikawa, S. Hasegawa, T. Fujii, S. Yoshida, Forced convective heat transfer to supercritical water flowing in tubes, Int. J. Heat Mass Tran. 15 (1972) 2575-2593. https://doi.org/10.1016/0017-9310(72)90148-2
  6. H. Wang, L.K.H. Leung, W. Wang, Q. Bi, A review on recent heat transfer studies to supercritical pressure water in channels, Appl. Therm. Eng. 142 (2018) 573-596. https://doi.org/10.1016/j.applthermaleng.2018.07.007
  7. I.L. Pioro, R.B. Duffey, Experimental heat transfer in supercritical water flowing inside channels (survey), Nucl. Eng. Des. 235 (2005) 2407-2430. https://doi.org/10.1016/j.nucengdes.2005.05.034
  8. X. Cheng, T. Schulenberg, Heat Transfer at Supercritical Pressures: Literature Review and Application to an HPLWR, 2001.
  9. S. Mokry, I. Pioro, A. Farah, K. King, S. Gupta, W. Peiman, P. Kirillov, Development of supercritical water heat-transfer correlation for vertical bare tubes, Nucl. Eng. Des. 241 (2011) 1126-1136. https://doi.org/10.1016/j.nucengdes.2010.06.012
  10. S. Koshizuka, N. Takano, Y. Oka, Numerical analysis of deterioration phenomena in heat transfer to supercritical water, Int. J. Heat Mass Tran. 38 (1995) 3077-3084. https://doi.org/10.1016/0017-9310(95)00008-W
  11. A. Urbano, F. Nasuti, Onset of heat transfer deterioration in supercritical methane flow channels, J. Thermophys. Heat Tran. 27 (2013) 298-308. https://doi.org/10.2514/1.T4001
  12. V.A. Lokshin, S.I. E, Y.V. Vikhrev, Calculating temperature conditions of radiant heating surfaces in supercritical boilers, Therm. Eng. 15 (1968) 34-39.
  13. M. Styrikovich, T.K. Margulova, Z. Miropol'Skii, Problems in the development of designs of supercritical boilers, Teploenergetika 14 (1967) 4-7.
  14. R.A. Lee, K.H. Haller, Supercritical water heat transfer developments and applications. International Heat Transfer Conference Digital Library, Begel House Inc., 1974.
  15. M. Dongliang, Z. Tao, L. Bing, M. Ali Shahzad, H. Yanping, An improved correlation on the onset of heat transfer deterioration in supercritical water, Nucl. Eng. Des. 326 (2018) 290-300. https://doi.org/10.1016/j.nucengdes.2017.11.026
  16. G.A. Schatte, A. Kohlhepp, C. Wieland, H. Spliethoff, Development of a new empirical correlation for the prediction of the onset of the deterioration of heat transfer to supercritical water in vertical tubes, Int. J. Heat Mass Tran. 102 (2016) 133-141. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.007
  17. X. Kong, H. Li, Q. Zhang, K. Guo, Q. Luo, X. Lei, A new criterion for the onset of heat transfer deterioration to supercritical water in vertically-upward smooth tubes, Appl. Therm. Eng. 151 (2019) 66-76. https://doi.org/10.1016/j.applthermaleng.2019.01.077
  18. N. Kline, F. Feuerstein, S. Tavoularis, Onset of heat transfer deterioration in vertical pipe flows of CO2 at supercritical pressures, Int. J. Heat Mass Tran. 118 (2018) 1056-1068. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.039
  19. Y.V. Vikhrev, Y.D. Barulin, A. Kon'Kov, A study of heat transfer in vertical tubes at supercritical pressures, Therm. Eng. 14 (1967) 116-119.
  20. V.I. Deev, V.S. Kharitonov, A.N. Churkin, Analysis and generalization of experimental data on heat transfer to supercritical pressure water flow in annular channels and rod bundles, Therm. Eng. 64 (2017) 142-150. https://doi.org/10.1134/S0040601516110021
  21. Z. Li, D. Zhang, Y. Wu, J. Lu, Q. Liu, A new criterion for predicting deterioration of heat transfer to supercritical water in smooth tubes, Proc. CSEE 34 (2014) 6304-6310.
  22. X. Cheng, Y.H. Yang, S.F. Huang, A simplified method for heat transfer prediction of supercritical fluids in circular tubes, Ann. Nucl. Energy 36 (2009) 1120-1128. https://doi.org/10.1016/j.anucene.2009.04.016
  23. Q.L. Wen, H.Y. Gu, Numerical simulation of heat transfer deterioration phenomenon in supercritical water through vertical tube, Ann. Nucl. Energy 37 (2010) 1272-1280. https://doi.org/10.1016/j.anucene.2010.05.022
  24. B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Comput. Methods Appl. Mech. Eng. 3 (1974) 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  25. F. Menter, Zonal two equation k-w turbulence models for aerodynamic flows, in: 24th Fluid Dynamics Conference, 1993.
  26. Z. Shen, D. Yang, S. Wang, W. Wang, Y. Li, Experimental and numerical analysis of heat transfer to water at supercritical pressures, Int. J. Heat Mass Tran. 108 (2017) 1676-1688. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.081
  27. S. Sahu, A.M. Vaidya, Numerical study of enhanced and deteriorated heat transfer phenomenon in supercritical pipe flow, Ann. Nucl. Energy 135 (2020), 106966. https://doi.org/10.1016/j.anucene.2019.106966
  28. A.K. Srivastava, A.M. Vaidya, N.K. Maheshwari, P.K. Vijayan, Heat transfer and pressure drop characteristics of molten fluoride salt in circular pipe, Appl. Therm. Eng. 61 (2013) 198-205. https://doi.org/10.1016/j.applthermaleng.2013.07.051
  29. D.C. Wilcox, Turbulence Modeling for CFD, DCW industries La Canada, CA, 1998.
  30. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington DC, 1980.
  31. M. Shitsman, Impairment of the heat transmission at supercritical pressures, High Temp. 1 (1963) 237-244.
  32. S. Mokry, I. Pioro, P. Kirillov, Y. Gospodinov, Supercritical-water heat transfer in a vertical bare tube, Nucl. Eng. Des. 240 (2010) 568-576. https://doi.org/10.1016/j.nucengdes.2009.09.003
  33. X. Zhu, Q. Bi, D. Yang, T. Chen, An investigation on heat transfer characteristics of different pressure steam-water in vertical upward tube, Nucl. Eng. Des. 239 (2009) 381-388. https://doi.org/10.1016/j.nucengdes.2008.10.026