Acknowledgement
This research has been supported by the National Natural Science Foundation of China (Grant No. 12075185) and Young Elite Scientists Sponsorship Program by CAST (No.2019QNRC001).
References
- J. Pacio, K. Litfifin, A. Batta, et al., Heat transfer to liquid metals in a hexagonal rod bundle with grid spacers: experimental and simulation results, Int. J. Nuclear Engineering and Design 290 (2015) 27-39. https://doi.org/10.1016/j.nucengdes.2014.11.001
- F. Roelofs, A. Shams, I. Otic, et al., Status and perspective of turbulence heat transfer modelling for the industrial application of liquid metal flows, Int. J. Nuclear Engineering and Design 290 (2015) 99-106. https://doi.org/10.1016/j.nucengdes.2014.11.006
- M.J. Wang, Y.J. Wang, W.X. Tian, et al., Recent progress of CFD applications in PWR thermal hydraulics study and future directions, Int. J. Annals of Nuclear Energy 150 (2021) 107836. https://doi.org/10.1016/j.anucene.2020.107836
- H. Qin, C.L. Wang, M.J. Wang, D.L. Zhang, W.X. Tian, G.H. Su, S.Z. Qiu, Numerical investigation on thermal-hydraulic characteristics of NaK in a helical wire wrapped annulus, Int. J. Heat Mass Transfer 145 (2019) 118689. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118689
- X.A. Wang, D.L. Zhang, M.J. Wang, P. Song, S.B. Wang, Y. Liang, Y.P. Zhang, W.X. Tian, S.Z. Qiu, G.H. Su, Hybrid medium model for conjugate heat transfer modeling in the core of sodium-cooled fast reactor, Int. J. Nucl. Eng. Technol. 52 (2019) 708-720.
- S. Manservisi, F. Menghini, Triangular rod bundle simulations of a k - ε - kθ - εθ CFD heat transfer turbulence model for heavy liquid metal, Int. J. Nuclear Engineering and Design 273 (2014) 251-270. https://doi.org/10.1016/j.nucengdes.2014.03.022
- H. Kawamura, H. Abe, Y. Matsuo, DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects, Int. J. Heat Fluid Flow 20 (1999) 196-207. https://doi.org/10.1016/S0142-727X(99)00014-4
- X. Cheng, N. Tak, CFD analysis of thermal-hydraulic behavior of heavy liquid metals in sub-channels, Int. J. Nuclear Engineering and Design (2006) 1874-1885.
- W. Kays, Turbulent Prandtl number - where are we, Int. J. Heat Transfer. Trans. ASME 116 (1994) 284-295. https://doi.org/10.1115/1.2911398
- R.L. Sun, D.L. Zhang, Y. Liang, M.J. Wang, W.X. Tian, S.Z. Qiu, G.H. Su, Development of a subchannel analysis code for SFR wire-wrapped fuel assemblies, Int. J. Progress Nucl. Energy 104 (2018) 327-341. https://doi.org/10.1016/j.pnucene.2017.12.005
- X. Cheng, N. Tak, Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear application, Int. J. Nuclear Engineering and Design 236 (2006) 385-393. https://doi.org/10.1016/j.nucengdes.2005.09.006
- M. Duponcheel, L. Bricteux, M. Manconi, et al., Assessment of RANS and improved near-wall modeling for forced convection at low Prandtl numbers based on LES up to Re = 2000, Int. J. Heat Mass Tran. 75 (2014) 470-482. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.080
- S. Kenjeres, K. Hanjalic, Convective rolls and heat transfer in finite-length RayleigheBernard convection: a two-dimensional numerical study, Phys. Rev. 62 (6) (2000) 7987-7998.
- S. Kenjeres, S.B. Gunarjo, K. Hanjalic, Contribution to elliptic relaxation modelling of turbulent natural and mixed convection, Int. J. Heat Fluid Flow 26 (4) (2005) 569-586. https://doi.org/10.1016/j.ijheatfluidflow.2005.03.007
- A. Shams, F. Roelofs, E. Baglietto, S. Lardeau, S. Kenjeres, Assessment and calibration of an algebraic turbulent heat flux model for low-Prandtl fluids, Int. J. Heat Mass Tran. 79 (2014) 589-601. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.018
- S. Manservisi, F. Menghini, A CFD four parameter heat transfer turbulence model for engineering applications in heavy liquid metals, Int. J. Heat Mass Tran. 69 (2014) 312-326. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.017
- S. Manservisi, F. Menghini, CFD simulations in heavy liquid metal flows for square lattice bare rod bundle geometries with a four-parameter heat transfer turbulence model, Int. J. Nuclear Engineering and Design 295 (2015) 251-260. https://doi.org/10.1016/j.nucengdes.2015.10.006
- J. Pacio, K. Litfin, A. Batta, et al., Heat transfer to liquid metals in a hexagonal rod bundle with grid spacers: experimental and simulation results, Nucl. Eng. Des. 290 (2015) 27-39. https://doi.org/10.1016/j.nucengdes.2014.11.001
- D.L. Wang, C.H. Peng, Y. Guo, Thermal-hydraulic analysis of a 7-pin sodium-cooled fast reactor wire-wrapped fuel bundle, Int. J. Heat Mass Tran. 160 (2020) 120178. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120178
- J. Li, D. Fang, C. Guo, M.J. Wang, J. Deng, W.X. Tian, S.Z. Qiu, G.H. Su, Numerical Study on the Thermal Hydraulic Characteristics in a Wire-Wrapped Assembly of LFR, Frontier in Energy Research, 2020, p. 548065.
- H.A. Johnson, J.P. Hartnett, W.J. Clabaugh, Heat transfer to molten lead-bismuth eutectic in turbulent pipe flow, Int. C. The Atomic Energy Commission (1951) 1-105.
- K. Abe, T. Kondoh, Y. Nagano, A two-equation heat transfer model reflecting second-moment closures for wall and free turbulent flows, Int. J. Heat Fluid Flow 17 (1996) 228-237. https://doi.org/10.1016/0142-727X(96)00037-9
- K. Abe, T. Kondoh, Y. Nagano, A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows. II. Thermal field calculations, Int. J. Heat Mass Tran. 38 (8) (1995) 1467-1481. https://doi.org/10.1016/0017-9310(94)00252-Q
- C.B. Hwang, C.A. Lin, A low Reynolds number two-equation kt-et model to predict thermal field, Int. J. Heat Mass Tran. 42 (1999) 3217-3230. https://doi.org/10.1016/S0017-9310(98)00382-2
- B. Deng, W. Wu, S. Xi, A near-wall two-equation heat transfer model for wall turbulent flow, Int. J. Heat Mass Tran. 44 (2001) 691-698. https://doi.org/10.1016/S0017-9310(00)00131-9
- H. Hattori, Y. Nagano, M. Tagawa, in: W. Rodi, F. Martelli (Eds.), Analysis of Turbulent Heat Transfer under Various Thermal Conditions with Two-Equation Models, Engineering Turbulence Modeling and Experiments 2, 1993, pp. 43-52. https://doi.org/10.1016/B978-0-444-89802-9.50010-1
- Y. Nagano, M. Shimada, Development of a two-equation heat transfer model based on direct simulations of turbulent flows with different Prandtl numbers, Phys. Fluids 8 (1996) 3379-3402. https://doi.org/10.1063/1.869124
- Nuclear Energy Agency, Handbook on lead-bismuth eutectic alloy and lead properties, in: Materials Compatibility, Thermal-hydraulics and Technologies, OECD/NEA, 2015.
- H.J. Uitslag-Doolaarda, F. Roelofsa, J.C. Paciob, et al., Experiment design to assess the inter-wrapper heat transfer in LMFR, Int. J. Nucl. Eng.Des. 341 (2019) 297-305. https://doi.org/10.1016/j.nucengdes.2018.11.019
- J. Chen, D.L. Zhang, P. Song, X. Wang, S.B. Wang, Y. Liang, S.Z. Qiu, Y.P. Zhang, M.J. Wang, G.H. Su, CFD investigation on thermal-hydraulic behaviors of a wire-wrapped fuel subassembly for sodium-cooled fast reactor, Int. J. Ann. Nucl. Energy 113 (2018) 256-269. https://doi.org/10.1016/j.anucene.2017.11.023